La radiologia medica

, Volume 119, Issue 7, pp 521–532 | Cite as

C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications

  • Chiara Floridi
  • Alessandro Radaelli
  • Nadine Abi-Jaoudeh
  • Micheal Grass
  • Ming De Lin
  • Melanie Chiaradia
  • Jean-Francois Geschwind
  • Hishman Kobeiter
  • Ettore Squillaci
  • Geert Maleux
  • Andrea Giovagnoni
  • Luca Brunese
  • Bradford Wood
  • Gianpaolo Carrafiello
  • Antonio Rotondo


C-arm cone-beam computed tomography (CBCT) is a new imaging technology integrated in modern angiographic systems. Due to its ability to obtain cross-sectional imaging and the possibility to use dedicated planning and navigation software, it provides an informed platform for interventional oncology procedures. In this paper, we highlight the technical aspects and clinical applications of CBCT imaging and navigation in the most common loco-regional oncological treatments.


Interventional oncology Cone-beam computed tomography Imaging guidance Percutaneous treatments Embolization Ablation 



This study supported in part by the Intramural Research Program of the NIH and the NIH Center for Interventional Oncology (BJW & NAJ). NIH and Philips Healthcare have a cooperative research and development agreement.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Solomon SB, Silverman SG (2010) Imaging in interventional oncology. Radiology 257(3):624–640PubMedCrossRefGoogle Scholar
  2. 2.
    Abi-Jaoudeh N, Duffy AG, Greten TF, Kohn EC, Clark TW, Wood BJ (2013) Personalized oncology in interventional radiology. J Vasc Interv Radiol 24(8):1083–1092PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Chen X, Xiao E, Shu D, Yang C, Liang B, He Z, Bian D (2014) Evaluating the therapeutic effect of hepatocellular carcinoma treated with transcatheter arterial chemoembolization by magnetic resonance perfusion imaging. Eur J Gastroenterol Hepatol 26(1):109–113PubMedCrossRefGoogle Scholar
  4. 4.
    Kim I, Kim DJ, Kim KA, Yoon SW, Lee JT (2014) Feasibility of MDCT angiography for determination of tumor-feeding vessels in chemoembolization of hepatocellular carcinoma. J Comput Assist Tomogr. [Epub ahead of print]Google Scholar
  5. 5.
    Buckner CA, Venkatesan A, Locklin JK, Wood BJ (2011) Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography. J Ultrasound Med 30(2):253–256PubMedCentralPubMedGoogle Scholar
  6. 6.
    Park BJ, Byun JH, Jin YH, Won HJ, Shin YM, Kim KW, Park SJ, Kim PN (2009) CT-guided radiofrequency ablation for hepatocellular carcinomas that were undetectable at US: therapeutic effectiveness and safety. J Vasc Interv Radiol 20(4):490–499PubMedCrossRefGoogle Scholar
  7. 7.
    Ryan R, Sofocleous C, Schöder H et al (2013) Split-dose technique for FDG PET/CT-guided percutaneous ablation: a method to facilitate lesion targeting and to provide immediate assessment of treatment effectiveness. Radiology. doi: 10.1148/radiol.13121462 PubMedCentralGoogle Scholar
  8. 8.
    Tuncali K, Morrison PR, Winalski CS, Carrino JA, Shankar S, Ready JE, vanSonnenberg E, Silverman SG (2007) MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. Am J Roentgenol 189(1):232–239CrossRefGoogle Scholar
  9. 9.
    Orth RC, Wallace MJ, Kuo MD et al (2008) Technology assessment committee of the society of interventional Radiology C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 19(6):814–820PubMedCrossRefGoogle Scholar
  10. 10.
    Grass M, Guillemaud R, Rasche V (2009) Interventional X-ray volume tomography. In: Grangeat P (ed) Tomography. Wiley, New York, pp 287–306CrossRefGoogle Scholar
  11. 11.
    Racadio JM, Babic D, Homan R et al (2007) Live 3D guidance in the interventional radiology suite. Am J Roentgenol 189(6):W357–W364CrossRefGoogle Scholar
  12. 12.
    Grass M, Koppe R, Klotz E et al (1999) Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph 23(6):311–321PubMedCrossRefGoogle Scholar
  13. 13.
    Lin M, Loffroy R, Noordhoek N et al (2011) Evaluating tumors in transcatheter arterial chemoembolization (TACE) using dual-phase cone-beam CT. Minim Invasive Ther Allied Technol 20(5):276–281PubMedCrossRefGoogle Scholar
  14. 14.
    Caroff J, Jittapiromsak P, Ruijters D et al (2014) Use of time attenuation curves to determine steady-state characteristics before C-arm CT measurement of cerebral blood volume. Neuroradiology 56(3):245–249PubMedCrossRefGoogle Scholar
  15. 15.
    Tognolini A, Louie J, Hwang G et al (2010) C-arm computed tomography for hepatic interventions: a practical guide. J Vasc Interv Radiol 21(12):1817–1823PubMedCrossRefGoogle Scholar
  16. 16.
    Kothary N, Abdelmaksoud MH, Tognolini A et al (2011) Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol 22(11):1535–1543PubMedCrossRefGoogle Scholar
  17. 17.
    Schulz B, Heidenreich R, Heidenreich M et al (2012) Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications. Eur J Radiol 81(12):4138–4142PubMedCrossRefGoogle Scholar
  18. 18.
    Suzuki S, Yamaguchi I, Kidouchi T, Yamamoto A, Masumoto T, Ozaki Y (2011) Evaluation of effective dose during abdominal three-dimensional imaging for three flat-panel-detector angiography systems. Cardiovasc Intervent Radiol 34(2):376–382PubMedCrossRefGoogle Scholar
  19. 19.
    Paul J, Jacobi V, Farhang M, Bazrafshan B et al (2013) Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy. Eur Radiol 23(6):1582–1593PubMedCrossRefGoogle Scholar
  20. 20.
    Braak SJ, van Strijen MJ, van Es HW, Nievelstein RA, van Heesewijk JP (2011) Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 22(4):455–461PubMedCrossRefGoogle Scholar
  21. 21.
    Tacher V, Radaelli A, Lin M et al (2014) How i do it: cone beam computed tomography during transarterial chemoembolization for liver cancer. Radiology. AcceptedGoogle Scholar
  22. 22.
    Floridi C, Muollo A, Fontana F et al (2014) C-arm cone-beam computed tomography needle path overlay for percutaneous biopsy of pulmonary nodules, Radiol med. [Epub ahead of print]Google Scholar
  23. 23.
    Wallace MJ, Murthy R, Kamat PP et al (2007) Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol 18(12):1500–1507PubMedCrossRefGoogle Scholar
  24. 24.
    Wallace MJ, Kuo MDK, Glaiberman C et al (2008) Three-dimensional C-arm cone-beam CT:applications in the interventional suite. J Vasc Interv Radiol 19:799–813PubMedCrossRefGoogle Scholar
  25. 25.
    Wallace MJ (2007) C-arm computed tomography for guiding hepatic vascular interventions. Tech Vasc Interv Radiol 10(1):79–86PubMedCrossRefGoogle Scholar
  26. 26.
    Hirota S, Nakao N, Yamamoto S et al (2006) Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Intervent Radiol 29(6):1034–1038PubMedCrossRefGoogle Scholar
  27. 27.
    Suk OhJ, Jong Chun H et al (2013) Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma: usefulness of contrast saturation features on cone-beam computed tomography imaging for predicting short-term tumor response. J Vasc Interv Radiol 24(4):483–489CrossRefGoogle Scholar
  28. 28.
    Miyayama S, Yamashiro M, Okuda M et al (2011) Detection of corona enhancement of hypervascular hepatocellular carcinoma by C-arm dual-phase cone-beam CT during hepatic arteriography. Cardiovasc Intervent Radiol 34(1):81–86PubMedCrossRefGoogle Scholar
  29. 29.
    Meyer B, Witschel M, Frericks B et al (2009) The value of combined soft-tissue and vessel visualisation before transarterial chemoembolisation of the liver using C-arm computed tomography. Eur Radiol 19(9):2302–2309PubMedCrossRefGoogle Scholar
  30. 30.
    Deschamps F, Solomon S, Thornton R et al (2010) Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Intervent Radiol. [Epub ahead of print]Google Scholar
  31. 31.
    Miyayama S, Yamashiro M, Okuda et al (2009) Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. CardioVasc Intervent Radiol 32(2):255–264PubMedCrossRefGoogle Scholar
  32. 32.
    Iwazawa J, Ohue S, Hashimoto N et al (2013) Clinical utility and limitations of tumor-feeder detection software for liver cancer embolization. Eur J Radiol 82(10):1665–1671PubMedCrossRefGoogle Scholar
  33. 33.
    Tacher V, Lin M, Bhagat N et al (2013) Dual-phase cone-beam computed tomography to see, reach, and treat hepatocellular carcinoma during drug-eluting beads transarterial chemo-embolization. J Vis Exp 2(82):50795Google Scholar
  34. 34.
    Higashihara H, Osuga K, Onishi H et al (2012) Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT. Eur Radiol 22(4):872–879PubMedCrossRefGoogle Scholar
  35. 35.
    Yu MH, Kim JH, Yoon J-H et al (2013) Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI. Am J Roentgenol 201(3):675–683CrossRefGoogle Scholar
  36. 36.
    Miyayama S, Matsui O, Yamashiro M et al (2009) Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging 34:502–506PubMedCrossRefGoogle Scholar
  37. 37.
    Iwazawa J, Ohue S, Hashimoto N et al (2010) Detection of hepatocellular carcinoma: comparison of angiographic C-arm CT and MDCT. Am J Roentgenol 195(4):882–887CrossRefGoogle Scholar
  38. 38.
    Wang Z, Lin M, Lesage D et al (2014) Three-dimensional evaluation of lipiodol retention in HCC after chemoembolization: a quantitative comparison between CBCT and MDCT. Acad Radiol 21(3):393–399PubMedCrossRefGoogle Scholar
  39. 39.
    Chen R, Geschwind J-F, Wang Z et al (2013) Quantitative assessment of lipiodol deposition after chemoembolization: comparison between cone-beam CT and multi-detector CT. J Vasc Interv Radiol 24(12):1837–1844PubMedCrossRefGoogle Scholar
  40. 40.
    Jeon UB, Lee JW, Choo KS et al (2009) Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas. World J Gastroenterol 15(46):5833–5837PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Iwazawa J, Ohue S, Kitayama T et al (2011) C-arm CT for assessing initial failure of iodized oil accumulation in chemoembolization of hepatocellular carcinoma. Am J Roentgenol 197(2):W337–W342CrossRefGoogle Scholar
  42. 42.
    Loffroy R, Lin M, Yenokyan G et al (2013) Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology 266(2):636–648PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Loffroy R, Lin M, Rao P et al (2012) Comparing the detectability of hepatocellular carcinoma by C-arm dual-phase cone-beam computed tomography during hepatic arteriography with conventional contrast-enhanced magnetic resonance imaging. Cardiovasc Intervent Radiol 35(1):97–104PubMedCrossRefGoogle Scholar
  44. 44.
    Iwazawa J, Ohue S, Hashimoto N et al (2012) Survival after C-arm CT-assisted chemoembolization of unresectable hepatocellular carcinoma. Eur J Radiol 81(12):3985–3992PubMedCrossRefGoogle Scholar
  45. 45.
    Sato K, Lewandowski R, Mulcahy M et al (2008) Unrespectable chemo refractory liver metastases: radioembolization with 90Y microspheres: safety, efficacy and survival. Radiology 247:507–515PubMedCrossRefGoogle Scholar
  46. 46.
    Salem R, Lewandowski R, Mulcahy M et al (2010) Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 138:52–64PubMedCrossRefGoogle Scholar
  47. 47.
    Hendlisz A, Van den Eynde M, Peeters M et al (2010) Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol 28:3687–3694PubMedCrossRefGoogle Scholar
  48. 48.
    Maleux G, Heye S, Vaninbroukx J et al (2010) Angiographic considerations in patients undergoing liver-directed radioembolization with 90Y microspheres. Acta Gastroenterol Belg 73:489–496PubMedGoogle Scholar
  49. 49.
    Heusner T, Hamami M, Ertle J et al (2010) Angiography-based C-arm CT for the assessment of extrahepatic shunting before radioembolization. Rofo 182:603–608PubMedCrossRefGoogle Scholar
  50. 50.
    Louie J, Kothary N, Kuo W et al (2009) Incorporating cone-beam CT into the treatment planning for Yttrium-90 radioembolization. J Vasc Intervent Radiol 20:606–613CrossRefGoogle Scholar
  51. 51.
    Bakal CW, Cynamon J, Lakritz PS, Sprayregen S (1993) Value of preoperative renal artery embolization in reducing blood transfusion requirements during nephrectomy for renal cell carcinoma. J Vasc Interv Radiol 4(6):727–731PubMedCrossRefGoogle Scholar
  52. 52.
    Ramon J, Rimon U, Garniek A et al (2009) Renal angiomyolipoma: long-term results following selective arterial embolization. Eur Urol 55(5):1155–1161PubMedCrossRefGoogle Scholar
  53. 53.
    Chan CK, Yu S, Yip S, Lee P (2011) The efficacy, safety and durability of selective renal arterial embolization in treating symptomatic and asymptomatic renal angiomyolipoma. Urology 77(3):642–648PubMedCrossRefGoogle Scholar
  54. 54.
    Chatziioannou A, Gargas D, Malagari K et al (2012) Transcatheter arterial embolization as therapy of renal angiomyolipomas: the evolution in 15 years of experience. Eur J Radiol 81(9):2308–2312PubMedCrossRefGoogle Scholar
  55. 55.
    Gao YA, Huang Y, Zhang R et al (2014) Benign prostatic hyperplasia: prostatic arterial embolization versus transurethral resection of the prostate—a prospective, randomized, and controlled clinical trial. Radiology 270(3):920–928PubMedCrossRefGoogle Scholar
  56. 56.
    Pisco J, Campos Pinheiro L, Bilhim T et al (2013) Prostatic arterial embolization for benign prostatic hyperplasia: short- and intermediate-term results. Radiology 266(2):668–677PubMedCrossRefGoogle Scholar
  57. 57.
    Bilhim T, Pisco J, Rio Tinto H et al (2013) Unilateral versus bilateral prostatic arterial embolization for lower urinary tract symptoms in patients with prostate enlargement. Cardiovasc Intervent Radiol 36(2):403–411PubMedCrossRefGoogle Scholar
  58. 58.
    Bagla S, Rholl KS, Sterling KM et al (2013) Utility of cone-beam CT imaging in prostatic artery embolization. J Vasc Interv Radiol 24(11):1603–1607PubMedCrossRefGoogle Scholar
  59. 59.
    Widmann G, Bodner G, Bale R et al (2009) Tumour ablation: technical aspects. Cancer Imaging 9:S63–S67PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Carrafiello G, Mangini M, De Bernardi I et al (2010) Microwave ablation therapy for treating primary and secondary lung tumours: technical note. Radiol Med 115:962–974PubMedCrossRefGoogle Scholar
  61. 61.
    Carrafiello G, Fontana F, Mangini M et al (2012) Initial experience with percutaneous biopsies of bone lesions using XperGuide cone-beam CT (CBCT): technical note. Radiol Med 117(8):1386–1397PubMedCrossRefGoogle Scholar
  62. 62.
    Busser WM, Braak SJ, Fütterer JJ et al (2013) Cone beam CT guidance provides superior accuracy for complex needle paths compared with CT guidance. Br J Radiol 86(1030):310–318Google Scholar
  63. 63.
    Morimoto M, Numata K, Kondo M et al (2010) C-arm cone beam CT for hepatic tumor ablation under real-time 3D imaging. Am J Roentgenol 194(5):W452–W454CrossRefGoogle Scholar
  64. 64.
    Iwazawa J, Ohue S, Hashimoto N et al (2012) Ablation margin assessment of liver tumors with intravenous contrast-enhanced C-arm computed tomography. World J Radiol 4(3):109–114PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Abi-Jaoudeh N, Mielekamp P, Noordhoek N et al (2012) Cone-beam computed tomography fusion and navigation for real-time positron emission tomography-guided biopsies and ablations: a feasibility study. J Vasc Interv Radiol 23(6):737–743PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Abi-Jaoudeh N, Kruecker J, Kadoury S et al (2012) Multimodality image fusion-guided procedures: technique, accuracy, and applications. Cardiovasc Intervent Radiol 35(5):986–998PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Abi-Jaoudeh N, Kobeiter H, Xu S, Wood BJ (2013) Image fusion during vascular and nonvascular image-guided procedures. Tech Vasc Interv Radiol 16(3):168–176PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Medical Radiology 2014

Authors and Affiliations

  • Chiara Floridi
    • 1
  • Alessandro Radaelli
    • 2
  • Nadine Abi-Jaoudeh
    • 3
  • Micheal Grass
    • 4
    • 5
  • Ming De Lin
    • 4
    • 5
  • Melanie Chiaradia
    • 6
  • Jean-Francois Geschwind
    • 7
  • Hishman Kobeiter
    • 6
  • Ettore Squillaci
    • 8
  • Geert Maleux
    • 9
  • Andrea Giovagnoni
    • 10
  • Luca Brunese
    • 11
  • Bradford Wood
    • 3
  • Gianpaolo Carrafiello
    • 1
  • Antonio Rotondo
    • 12
  1. 1.Radiology DepartmentInsubria UniversityVareseItaly
  2. 2.Philips HealthcareWoerdenThe Netherlands
  3. 3.Center for Interventional OncologyNational Institutes of Health, Radiology and Imaging SciencesBethesdaUSA
  4. 4.Philips Research North AmericaBriarcliff ManorUSA
  5. 5.Philips ResearchHamburgGermany
  6. 6.Department of Radiology and Medical ImagingHenri Mondor HospitalCréteilFrance
  7. 7.Division of Vascular and Interventional RadiologyJohns Hopkins HospitalBaltimoreUSA
  8. 8.Department of Diagnostic and Molecular Imaging, Interventional Radiology and RadiotherapyUniversity Tor VergataRomeItaly
  9. 9.Department of RadiologyLeuven University HospitalsLouvainBelgium
  10. 10.Department of RadiologyUniversity of AnconaAnconaItaly
  11. 11.Department of RadiologyUniversity of MoliseCampobassoItaly
  12. 12.Department of RadiologySeconda Università degli StudiNaplesItaly

Personalised recommendations