La radiologia medica

, Volume 118, Issue 4, pp 591–607 | Cite as

Rationale, design and methods of CTCA-PRORECAD (Computed Tomography Coronary Angiography Prognostic Registry for Coronary Artery Disease): a multicentre and multivendor registry

  • E. Maffei
  • M. Midiri
  • V. Russo
  • M. Rengo
  • C. Tedeschi
  • P. Spagnolo
  • S. Seitun
  • M. Francone
  • A. I. Guaricci
  • N. Carrabba
  • R. Malagò
  • A. Cuocolo
  • T. Arcadi
  • O. A. Catalano
  • F. Cademartiri
Cardiac Radiology / Cardioradiologia

Abstract

Purpose

This study was done to assess the prognostic value of computed tomography coronary angiography (CTCA) in a large multicentre population of patients with suspected coronary artery disease (CAD) and, in particular, its incremental value compared with traditional methods for risk stratification.

Materials and methods

This is a retrospective observational study that began in January 2003 conducted on patients with suspected CAD assessed with CTCA on the basis of symptoms (chest pain, dyspnoea) and/or abnormal or equivocal stress test and/or a high cardiovascular risk profile. The participating centres will provide data obtained with CTCA performed with 16-slice or higher equipment. Exclusion criteria are renal insufficiency, allergy to iodinated contrast material, pregnancy and previous myocardial infarction or revascularisation (percutaneous coronary intervention and/or coronary artery bypass graft). All patients are stratified by means of clinical assessment and/or data retrieved from a clinical database. Risk factors considered are hypertension, dyslipidaemia, diabetes mellitus, smoking, family history and obesity. Symptoms are classified as absent, typical chest pain, atypical chest pain and dyspnoea. Primary endpoints are death, major adverse cardiovascular events (cardiac death, unstable angina requiring hospitalisation, acute myocardial infarction) and shifting of cardiovascular risk category on the basis of coronary plaque burden. The secondary endpoint is coronary revascularisation. Telephone interviews and/or clinical databases are used for the follow-up. The study will be conducted on a population >1,000 patients.

Conclusions

The information collected from the Prognostic Registry for Coronary Artery Disease (PRORECAD) will provide insight into the prognostic value of CTCA in addition to demographic and clinical features. The results will allow for better use and interpretation of CTCA for prognostic purposes.

Keywords

Computed tomography coronary angiography Coronary artery disease Prevalence of disease Prognosis Risk stratification Registry 

Razionale, disegno e metodi del CTCA-PRORECAD (Registro di Prognosi per la Malattia delle Arterie Coronarie mediante Angiografia Coronarica a Tomografia Computerizzata); un registro multi-centrico e multi-vendor

Riassunto

Obiettivo

Scopo del presente lavoro è stato valutare il valore prognostico della angiografia coronarica mediante tomografia computerizzata (CTCA) in una ampia popolazione multicentrica di pazienti con sospetta malattia coronarica (CAD) ed in particolare il valore incrementale rispetto ai tradizionali sistemi di stratificazione del rischio.

Materiali e metodi

Questo è uno studio osservazionale retrospettivo con inizio da gennaio 2003 su pazienti con sospetta CAD valutati mediante CTCA sulla base di sintomi (dolore toracico, dispnea) e/o per stress test alterato o dubbio e/o per un elevato profilo di rischio cardiovascolare. I centri partecipanti forniscono i dati ottenuti mediante CTCA con apparecchiatura a 16-strati o superiore. Criteri di esclusione sono: insufficienza renale, allergia al mezzo di contrasto iodato, gravidanza, pregresso infarto miocardico e rivascolarizzazione [rivascolarizzazione coronaria percutanea (PCI) e/o rivascolarizzazione chirurgica miocardica mediante confezionamento di bypass coronarici (CABG)]. Tutti i pazienti vengono stratificati mediante valutazione clinica e/o dati derivanti da database clinico. I fattori di rischio considerati sono: ipertensione, dislipidemia, diabete mellito, abitudine tabagica, familiarità, obesità. I sintomi vengono classificati come assenza di sintomi, dolore toracico tipico, dolore toracico atipico, dispnea. Gli obiettivi primari dello studio sono: morte; eventi cardiaci avversi maggiori (MACE) (vale a dire, morte cardiaca, ricovero per angina instabile, infarto miocardico acuto); variazione della categoria di prevalenza del rischio cardiovascolare sulla base del carico di placca coronarica. Gli obiettivi secondari sono: rivascolarizzazione coronarica. Per il follow-up viene utilizzato il contatto telefonico e/o il database clinico. Lo studio viene effettuato su una popolazione di riferimento di più di 1000 pazienti.

Conclusioni

Le informazioni raccolte dal Registro di Prognosi per la Malattia delle Arterie Coronarie (PRORECAD) aggiungeranno importanti informazioni sul valore prognostico della CTCA oltre alle caratteristiche demografiche e cliniche. I risultati consentiranno un utilizzo ed una interpretazione ottimale della CTCA ai fini prognostici.

Parole chiave

Angiografia coronarica a tomografia computerizzata Malattia delle arterie coronarie Prevalenza di malattia Prognosi Stratificazione del rischio Registro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Maffei E, Martini C, De Crescenzo S et al (2010) Low dose CT of the heart: a quantum leap into a new era of cardiovascular imaging. Radiol Med 115:1179–1207PubMedCrossRefGoogle Scholar
  2. 2.
    Shaw LJ, Raggi P, Schisterman E et al (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833PubMedCrossRefGoogle Scholar
  3. 3.
    Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556PubMedCrossRefGoogle Scholar
  4. 4.
    Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/ AHA/ASE/ASNC/NASCI/SCAI/ SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894PubMedCrossRefGoogle Scholar
  5. 5.
    Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832PubMedCrossRefGoogle Scholar
  6. 6.
    Nieman K, Cademartiri F, Lemos PA et al (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054PubMedCrossRefGoogle Scholar
  7. 7.
    Nieman K, Oudkerk M, Rensig BJ et al (2001) Coronary angiography with multislice computed tomography. Lancet 357:599–603PubMedCrossRefGoogle Scholar
  8. 8.
    Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med 110:16–41PubMedGoogle Scholar
  9. 9.
    Cademartiri F (2009) Cardiac CT: the missing piece of the puzzle. Eur Radiol 19:2584–2585PubMedCrossRefGoogle Scholar
  10. 10.
    Cademartiri F, La Grutta L, Palumbo A et al (2009) Computed tomography coronary angiography vs. stress ECG in patients with stable angina. Radiol Med 114:513–523PubMedCrossRefGoogle Scholar
  11. 11.
    Cademartiri F, Luccichenti G, Marano R et al (2003) Non-invasive angiography of the coronary arteries with multislice computed tomography: state of the art and future prospects. Radiol Med 106:284–296PubMedGoogle Scholar
  12. 12.
    Cademartiri F, Luccichenti G, Marano R et al (2003) Spiral CT-angiography with one, four, and sixteen slice scanners. Technical note. Radiol Med 106:269–283Google Scholar
  13. 13.
    Cademartiri F, Luccichenti G, Marano R et al (2004) Use of saline chaser in the intravenous administration of contrast material in non-invasive coronary angiography with 16-row multislice Computed Tomography. Radiol Med 107:497–505PubMedGoogle Scholar
  14. 14.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of nonobstructive coronary artery disease. Eur Radiol 20:846–854PubMedCrossRefGoogle Scholar
  15. 15.
    Cademartiri F, Malago R, Belgrano M et al (2007) Spectrum of collateral findings in multislice CT coronary angiography. Radiol Med 112:937–948PubMedCrossRefGoogle Scholar
  16. 16.
    Cademartiri F, Marano R, Luccichenti G et al (2004) Normal anatomy of the vessels of the heart with 16-row multislice computed tomography. Radiol Med 107:11–21PubMedGoogle Scholar
  17. 17.
    Cademartiri F, Seitun S, Romano M et al (2008) Prognostic value of 64-slice coronary angiography in diabetes mellitus patients with known or suspected coronary artery disease compared with a nondiabetic population. Radiol Med 113:627–643PubMedCrossRefGoogle Scholar
  18. 18.
    Aldrovandi A, Maffei E, Palumbo A et al (2009) Prognostic value of computed tomography coronary angiography in patients with suspected coronary artery disease: a 24-month follow-up study. Eur Radiol 19:1653–1660PubMedCrossRefGoogle Scholar
  19. 19.
    Carrigan TP, Nair D, Schoenhagen P et al (2009) Prognostic utility of 64-slice computed tomography in patients with suspected but no documented coronary artery disease. Eur Heart J 30:362–371PubMedCrossRefGoogle Scholar
  20. 20.
    Hadamitzky M, Freissmuth B, Meyer T et al (2009) Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging 2:404–411PubMedCrossRefGoogle Scholar
  21. 21.
    Maffei E, Seitun S, Martini C et al (2011) Prognostic value of CT coronary angiography: focus on obstructive vs. nonobstructive disease and on the presence of left main disease. Radiol Med 116:15–31Google Scholar
  22. 22.
    Pundziute G, Schuijf JD, Jukema JW et al (2007) Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 49:62–70PubMedCrossRefGoogle Scholar
  23. 23.
    Schuijf JD, Poldermans D, Shaw LJ et al (2006) Diagnostic and prognostic value of non-invasive imaging in known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging 33:93–104PubMedCrossRefGoogle Scholar
  24. 24.
    van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632PubMedCrossRefGoogle Scholar
  25. 25.
    Van Werkhoven JM, Cademartiri F, Seitun S et al (2010) Diabetes: prognostic value of CT coronary angiography—comparison with a nondiabetic population. Radiology 256:83–92PubMedCrossRefGoogle Scholar
  26. 26.
    Min JK, Dunning A, Lin FY et al (2011) Rationale and design of the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) Registry. J Cardiovasc Comput Tomogr 5:84–92PubMedCrossRefGoogle Scholar
  27. 27.
    Min JK, Shaw LJ, Devereux RB et al (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50:1161–1170PubMedCrossRefGoogle Scholar
  28. 28.
    Mollet NR, Cademartiri F, van Mieghem CA et al (2005) Highresolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  29. 29.
    Maffei E, Palumbo AA, Martini C et al (2009) “In-house” pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol 19:2931–2940PubMedCrossRefGoogle Scholar
  30. 30.
    Guaricci AI, Schuijf JD, Cademartiri F et al (2010) Incremental value and safety of oral ivabradine for heart rate reduction in computed tomography coronary angiography. Int J Cardiol 156:28–33PubMedCrossRefGoogle Scholar
  31. 31.
    Cademartiri F (2006) Is calcium the key for the assessment of progression/ regression of coronary artery disease? Heart 92:1187–1188PubMedCrossRefGoogle Scholar
  32. 32.
    Cademartiri F, Runza G, La Grutta L et al (2005) Non-invasive evaluation of coronary calcium. Radiol Med 110:506–522PubMedGoogle Scholar
  33. 33.
    Morise AP, Haddad WJ, Beckner D (1997) Development and validation of a clinical score to estimate the probability of coronary artery disease in men and women presenting with suspected coronary disease. Am J Med 102:350–356PubMedCrossRefGoogle Scholar
  34. 34.
    Morise AP, Diamond GA (1995) Comparison of the sensitivity and specificity of exercise electrocardiography in biased and unbiased populations of men and women. Am Heart J 130:741–747PubMedCrossRefGoogle Scholar
  35. 35.
    Mowatt G, Cummins E, Waugh N et al (2008) Systematic review of the clinical effectiveness and costeffectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12:iii–iv, ix–143Google Scholar
  36. 38.
    Di Cesare E, Carbone I, Carriero A et al (2012) Clinical indications for cardiac computed tomography. From the Working Group of the Cardiac Radiology Section of the Italian Society of Medical Radiology (SIRM). Radiol Med 117(6):901–938Google Scholar
  37. 37.
    Bueno H, Armstrong PW, Buxton MJ et al (2011) The future of clinical trials in secondary prevention after acute coronary syndromes. Eur Heart J 13:1583–1589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • E. Maffei
    • 1
    • 2
  • M. Midiri
    • 3
  • V. Russo
    • 4
  • M. Rengo
    • 5
  • C. Tedeschi
    • 6
  • P. Spagnolo
    • 7
  • S. Seitun
    • 8
  • M. Francone
    • 5
  • A. I. Guaricci
    • 9
  • N. Carrabba
    • 10
  • R. Malagò
    • 11
  • A. Cuocolo
    • 12
    • 13
  • T. Arcadi
    • 1
    • 2
  • O. A. Catalano
    • 13
  • F. Cademartiri
    • 1
    • 2
    • 14
    • 15
  1. 1.Dipartimento di RadiologiaAzienda Ospedaliero-UniversitariaParmaItaly
  2. 2.RadiologiaClinica Giovanni XXIIIMonastier, TrevisoItaly
  3. 3.Dipartimento di RadiologiaUniversità di PalermoPalermoItaly
  4. 4.Dipartimento di Radiologia, Policlinico Sant’OrsolaUniversità di BolognaBolognaItaly
  5. 5.Dipartimento di RadiologiaUniversità di Roma “La Sapienza” — Polo PontinoLatinaItaly
  6. 6.Dipartimento di Cardiologia e RadiologiaOspedale San Gennaro — ASL1NapoliItaly
  7. 7.CPCOspedale San RaffaeleMilanoItaly
  8. 8.Dipartimento di RadiologiaAzienda Ospedaliero-UniversitariaGenovaItaly
  9. 9.Dipartimento di Cardiologia e RadiologiaAzienda Ospedaliero-UniversitariaFoggiaItaly
  10. 10.Dipartimento di Cardiologia e RadiologiaAzienda Ospedaliero-UniversitariaFirenzeItaly
  11. 11.Dipartimento di RadiologiaUniversità di VeronaVeronaItaly
  12. 12.Dipartimento di RadiologiaUniversità Federico IINapoliItaly
  13. 13.Dipartimento di RadiologiaFondazione SDN-IRCCSNapoliItaly
  14. 14.Dipartimento di RadiologiaErasmus Medical CenterRotterdamOlanda
  15. 15.Area Cardio-VascolareCasa di Cura Giovanni XXIIIMonastier di TrevisoItaly

Personalised recommendations