La radiologia medica

, Volume 117, Issue 4, pp 654–668 | Cite as

Effect of two sitting postures on lumbar sagittal alignment and intervertebral discs in runners

  • A. DimitriadisEmail author
  • F. Smith
  • A. F. Mavrogenis
  • M. H. Pope
  • P. J. Papagelopoulos
  • A. Karantanas
  • A. Hadjipavlou
  • P. Katonis
Musculoskeletal Radiology / Radiologia Muscolo-Scheletrica



We evaluated in vivo changes in lumbar lordosis and intervertebral discs in runners and assessed the relationship between these changes and degenerative disc disease in runners with and without a history of low back pain.

Materials and methods

Using open upright magnetic resonance (MR) imaging, we prospectively studied changes in lumbar lordosis and intervertebral discs of 25 elite long-distance runners in two sitting postures (neutral and extended) before and after 1 h of running and compared the results with disc height and dehydration/ degeneration. Seventeen of the 25 runners had a history of low back pain.


After 1 h of running, mean lordosis in neutral posture reduced by 4°; reduction was significant in runners with a history of low back pain. A significant reduction in mean lordosis in extension was not observed. Mean disc height significantly reduced in both postures, without, however, any statistical significance between runners with and without a history low back pain in any posture. Variable degrees of disc dehydration/degeneration were observed in 23 runners (57 discs), more commonly at L5-S1. A significant difference of disc dehydration/degeneration between runners with and without a history of low back pain was not observed.


Intervertebral discs undergo significant strain after 1 h of running that in the long term may lead patoto low back pain and degenerative disc disease. Runners, especially those with low back pain and degenerative disc disease, should be evaluated after training to preserve the normal lumbar lordosis.


Lumbar spine Upright MR imaging Lordosis Runners 

Effetti di due posizioni sedute nell’allineamento sagittale del rachide lombare e nell’altezza dei dischi intersomatici nei corridori



Scopo del presente lavoro è stato valutare le variazioni in vivo della lordosi lombare e dei dischi intervertebrali nei corridori e definire la relazione fra questi cambiamenti e la patologia degenerativa discale negli atleti con e senza anamnesi positiva per lombalgia.

Materiali e metodi

Utilizzando una risonanza magnetica (RM) aperta in ortostatismo, sono stati studiati prospettivamente i cambiamenti della lordosi lombare di 25 corridori professionisti nelle lunghe distanze, prima e dopo un’ora di corsa, nella posizione seduta neutra e in quella estesa confrontando i risultati con l’altezza e la disidratazione/degenerazione dei dischi intersomatici. Diciassette dei 25 corridori avevano un’anamnesi positiva per lombalgia.


Dopo un’ora di corsa, si è osservata una riduzione statisticamente significativa della lordosi nei corridori con un’anamnesi positiva per lombalgia con un valore medio di 4 gradi mentre non si è osservata una riduzione significativa dei valori medi in estensione. L’altezza media dei dischi intersomatici si è ridotta in modo statisticamente significativo in entrambe le posizioni mentre non si è osservata una differenza statisticamente significativa fra i corridori con anamnesi positiva per lombalgia e quelli con anamnesi negativa. Riduzioni variabili dell’idratazione dei dischi sono state osservate in 23 corridori (57 dischi), più frequentemente a carico del disco L5-S1, non si è osservata però una differenza statisticamente significativa fra i corridori con anamnesi positiva per lombalgia e quelli con anamnesi negativa.


I dischi intervertebrali vanno incontro a deformità dopo 1 ora di corsa. A lungo termine ciò può determinare l’insorgenza di lombalgia e patologia degenerativa discale. I corridori, in particolare quelli con un’anamnesi positiva per lombalgia e patologia degenerativa discale, dovrebbero essere valutati dopo gli allenamenti per preservare la normale lordosi lombare.

Parole chiave

Rachide lombare RM aperta in ortostatismo Rachide lombare Lordosi Corridori 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ong A, Anderson J, Roche J (2003) A pilot study of the prevalence of the lumbar disc degeneration in elite athletes with lower back pain at the Sydney 2000 Olympic Games. Br J Sports Med 37:263–266PubMedCrossRefGoogle Scholar
  2. 2.
    Bahr R, Andersen SO, Løken S et al (2004) Low back pain among endurance athletes with and without specific back loading — a cross-sectional survey of cross-country skiers, rowers, orienteerers, and nonathletic controls. Spine 29:449–454PubMedCrossRefGoogle Scholar
  3. 3.
    Bono CM (2004) Low-back pain in athletes. J Bone Joint Surg Am 86A:382–396Google Scholar
  4. 4.
    Swärd L, Hellstrom M, Jacobsson B, Peterson L (1990) Back pain and radiologic changes in the thoracolumbar spine of athletes. Spine 15:124–129PubMedCrossRefGoogle Scholar
  5. 5.
    Swärd L, Hellstrom M, Jacobsson B et al (1991) Disc degeneration and associated abnormalities of the spine in elite gymnasts: a magnetic resonance imaging study. Spine 16:437–443PubMedCrossRefGoogle Scholar
  6. 6.
    Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. J Bone Joint Surg Am 46A:1077–1092Google Scholar
  7. 7.
    Nachemson A (1965) The effect of forward leaning on lumbar intradiscal pressure. Acta Orthop Scand 35:314–328PubMedCrossRefGoogle Scholar
  8. 8.
    Edmondston SJ, Song S, Bricknell RV et al (2000) MRI evaluation of lumbar spine flexion and extension in asymptomatic individuals. Man Ther 5:158–164PubMedCrossRefGoogle Scholar
  9. 9.
    Shirazi-Adl A, Parnianpour M (1999) Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting. J Spinal Disord 12:436–447PubMedGoogle Scholar
  10. 10.
    Takahashi I, Kikuchi S, Sato K, Sato N (2006) Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine 31:18–23PubMedCrossRefGoogle Scholar
  11. 11.
    Williams MM, Haweley JA, McKenzie RA, van Wijmen PM (1991) A comparison of the effects of two sitting postures on back and referred pain. Spine 16:1185–1191PubMedCrossRefGoogle Scholar
  12. 12.
    Swärd L (1992) The thoracolumbar spine in young elite athletes. Current concepts on the effects of physical training. Sports Med 13:357–364PubMedCrossRefGoogle Scholar
  13. 13.
    Nachemson A (1966) The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 45:107–122PubMedCrossRefGoogle Scholar
  14. 14.
    Nachemson A, Elfstom G (1970) Intravital dynamic pressure measurements in lumbar discs. A study of common movements, manoeuvres, and exercises. Scad J Rehabil Med Suppl 1:59–71Google Scholar
  15. 15.
    Andersson GB, Murphy RW, Ortengren R, Nachemson AL (1979) The influence of backrest inclination and lumbar support on lumbar lordosis. Spine 4:52–58PubMedCrossRefGoogle Scholar
  16. 16.
    Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila Pa 1976) 26:2596–2600CrossRefGoogle Scholar
  17. 17.
    Eriksson K, Németh G, Eriksson E (1996) Low back pain in elite cross-country skiers. A retrospective epidemiological study. Scand J Med Sci Sports 6:31–35PubMedCrossRefGoogle Scholar
  18. 18.
    Baker RJ, Patel D (2005) Lower back pain in the athlete: common conditions and treatment. Prim Care 32:201–229PubMedCrossRefGoogle Scholar
  19. 19.
    Bennett DL, Nassar L, DeLano MC (2006) Lumbar spine MRI in the elitelevel female gymnast with low back pain. Skeletal Radiol 35:503–509PubMedCrossRefGoogle Scholar
  20. 20.
    Iwamoto J, Abe H, Tsukimura Y, Wakano K (2004) Relationship between radiographic abnormalities of lumbar spine and incidence of low back pain in high school and college football players: a prospective study. Am J Sports Med 32:781–786PubMedCrossRefGoogle Scholar
  21. 21.
    Ogon M, Riedl-Huter C, Sterzinger W et al (2001) Radiologic abnormalities and low back pain in elite skiers. Clin Orthop Relat Res 390:151–162PubMedCrossRefGoogle Scholar
  22. 22.
    Cobb JR (1948) In: Edwards JW (ed) Outlines for the study of scoliosis: instructional course lecture. American Academy of Orthopedic Surgeons, Ann Arbor, MI, pp. 261–275Google Scholar
  23. 23.
    Dabbs VM, Dabbs LG (1990) Correlation between disc height narrowing and low-back pain. Spine (Phila Pa 1976) 15:1366–1369CrossRefGoogle Scholar
  24. 24.
    DeCandido P, Reinig JW, Dwyer AJ et al (1988) Magnetic resonance assessment of the distribution of lumbar spine disc degenerative changes. J Spinal Disord 1:9–15PubMedCrossRefGoogle Scholar
  25. 25.
    Stadnik TW, Lee RR, Coen HL et al (1998) Annular tears and disk herniation: prevalence and contrast enhancement on MR images in the absence of low back pain or sciatica. Radiology 206:49–55PubMedGoogle Scholar
  26. 26.
    Rasekhi A, Babaahmadi A, Assadsangabi R, Nabavizadeh SA (2006) Clinical manifestations and MRI findings of patients with hydrated and dehydrated lumbar disc herniation. Acad Radiol 13:1485–1489PubMedCrossRefGoogle Scholar
  27. 27.
    Stagnara P, De Mauroy JC, Dran G et al (1982) Reciprocal angulations of vertebral bodies in a sagittal plane: approach to references for the evaluation of kyphosis and lordosis. Spine 7:335–342PubMedCrossRefGoogle Scholar
  28. 28.
    Fernand R, Fox DE (1985) Evaluation of lumbar lordosis. A prospective and retrospective study. Spine 10:799–803PubMedCrossRefGoogle Scholar
  29. 29.
    Gelb D, Lenke L, Bridwel K et al (1995) An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine 20:1351–1358PubMedGoogle Scholar
  30. 30.
    Cil A, Yazici M, Uzumcugil A et al (2005) The evolution of sagittal segmental alignment of the spine during childhood. Spine 30:93–100PubMedGoogle Scholar
  31. 31.
    During J, Goudfrooij H, Keessen W et al (1985) Toward standards for posture. Postural characteristics of the lower back system in normal and pathologic conditions. Spine 10:83–87PubMedCrossRefGoogle Scholar
  32. 32.
    Widhe T (2001) Spine: posture, mobility and pain. A longitudinal study from childhood to adolescence. Eur Spine J 10:118–123PubMedCrossRefGoogle Scholar
  33. 33.
    Dugan SA, Bhat KP (2005) Biomechanics and analysis of running gait. Phys Med Rehabil Clin N Am 16:603–621PubMedCrossRefGoogle Scholar
  34. 34.
    Ounpuu S (1994) The biomechanics of walking and running. Clin Sport Med 13:843–863Google Scholar
  35. 35.
    Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77–95PubMedCrossRefGoogle Scholar
  36. 36.
    Magnusson ML, Hult E, Lindstrom I et al (1990) Measurement of timedependent height-loss during sitting. Clin Biomechanics 5:137–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • A. Dimitriadis
    • 1
    Email author
  • F. Smith
    • 2
  • A. F. Mavrogenis
    • 3
  • M. H. Pope
    • 2
  • P. J. Papagelopoulos
    • 4
  • A. Karantanas
    • 5
  • A. Hadjipavlou
    • 1
  • P. Katonis
    • 1
  1. 1.Department of OrthopaedicsUniversity of CreteCreteGreece
  2. 2.Department of RadiologyUniversity of AberdeenScotlandUK
  3. 3.Dipartimento di OrtopediaIstituto Ortopedico RizzoliBolognaItaly
  4. 4.First Department of OrthopaedicsATTIKON General University Hospital, Athens University Medical SchoolAthensGreece
  5. 5.Department of RadiologyUniversity of CreteCreteGreece

Personalised recommendations