La radiologia medica

, Volume 116, Issue 7, pp 1014–1026

Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data in NSTEMI acute coronary syndrome and influence of gender and risk factors

  • E. Maffei
  • C. Martini
  • C. Tedeschi
  • P. Spagnolo
  • A. Zuccarelli
  • T. Arcadi
  • A. Guaricci
  • S. Seitun
  • A. C. Weustink
  • N. R. Mollet
  • F. Cademartiri
Cardiac Radiology / Cardioradiologia

Abstract

Purpose

This study sought to evaluate the diagnostic accuracy of computed tomography coronary angiography (CTCA) for detecting significant coronary artery stenosis (≥50% lumen reduction) compared with conventional coronary angiography (CAG) in non-ST-elevation myocardial infarction-acute coronary syndrome (NSTEMI-ACS) and in subgroups selected by gender and number of risk factors (RF).

Materials and methods

We selected from a population of 1,500 patients in a multicentre registry with NSTEMI-ACS who had undergone CTCA and CAG, (n=237; 187 men, mean age 63±10 years). Diagnostic accuracy and likelihood ratios (LR) of CTCA were assessed against CAG in the total population and subgroups (men, women: 0 RF = absence of RF, 1–2 RF = presence of one or two RF, >2 RF = presence of more than two RF).

Results

The prevalence of obstructive disease was 53%. In the per-patient analysis, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CTCA were 100% (men 100%; women 100%; 0 RF 100%; 1–2 RF 100%; >2 RF 100%), 95% (men 98%; women 50%; 0 RF NA% (NA, not assessable); 1–2 RF 96%; >2 RF 96%), 95% (men 98%; women 91%; 0 RF 91%; 1–2 RF 96%; >2 RF 96%), 100% (men 100%; women 100%; 0 RF NV%; 1–2 RF 100%; >2 RF 100%), respectively. The per-segment analysis showed a reduction in PPV (ranging between 56% and 67%). The per-patient LR+ ranged between 18 and 27, whereas LR-were always 0. We observed no significant differences in diagnostic accuracy between subgroups.

Conclusions

CTCA is a reliable diagnostic modality with high sensitivity and NPV in NSTEMI-ACS patients who are not candidates for early revascularisation, regardless of gender and number of risk factors.

Keywords

CT coronary angiography Conventional coronary angiography Acute coronary syndrome NSTEMI Risk factors Diagnostic accuracy Registry 

Accuratezza diagnostica dell’angiografia coronarica con tomografia computerizzata in una ampia popolazione di pazienti non rivascolarizzati: dati di registro nella sindrome coronarica acuta NSTEMI ed influenza del genere e dei fattori di rischio

Riassunto

Obiettivo

Scopo del nostro lavoro è stato valutare l’accuratezza diagnostica dell’angiografia coronarica non invasiva con tomografia computerizzata (CTCA) nell’individuazione delle stenosi coronariche significative (riduzione del lume coronarico ≥50%) confrontata con la coronarografia convenzionale (CAG) nella sindrome coronarica acuta senza elevazione del tratto ST (ACS-NSTEMI) e nelle sue sottopopolazioni per genere e numero di fattori di rischio (FDR).

Materiali e metodi

Da una popolazione di 1500 pazienti appartenenti ad un registro multicentrico sono stati selezionati i pazienti con ACS-NSTEMI (237, 187 maschi, età media 63±10 anni) sottoposti a CTCA e CAG. Sono state calcolate l’accuratezza diagnostica e i quozienti di probabilità (LR) per la popolazione totale, e nei sottogruppi (maschi, femmine, 0RF=assenza di FDR, 1–2RF=presenza di 1 o 2 FDR, >2RF=presenza di più di 2 FDR).

Risultati

La prevalenza di malattia ostruttiva nella popolazione era del 53%. Nell’analisi per paziente la sensibilità, specificità, valore predittivo positivo e negativo della CTCA sono risultati 100% (maschi 100%; femmine 100%; 0RF 100%; 1–2RF 100%; >2RF 100%), 95% (maschi 98%; femmine 50%; 0RF NV% (NV, non valutabile); 1–2RF 96%; >2RF 96%), 95% (maschi 98%; femmine 91%; 0RF 91%; 1–2RF 96%; >2RF 96%), 100% (maschi 100%; femmine 100%; 0RF NV%; 1–2RF 100%; >2RF 100%), rispettivamente. Nell’analisi per segmento si è osservato un deterioramento del valore predittivo positivo (valori compresi tra 56% e 67%). I LR+ per paziente nelle popolazioni sono risultati compresi tra 18 e 27, mentre i LR-sono risultati sempre pari a 0. Non sono state osservate differenze significative di accuratezza diagnostica tra le sottopopolazioni.

Conclusioni

La CTCA è una metodica diagnostica affidabile sia per l’elevata sensibilità che per l’elevato valore predittivo negativo nei pazienti con ACS-NSTEMI non candidati ad immediata rivascolarizzazione, indipendentemente dal genere e dal numero di fattori di rischio.

Parole chiave

Angiografia coronarica TC Angiografia coronarica convenzionale Sindrome coronarica acuta NSTEMI Fattori di rischio Accuratezza diagnostica Registro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639. doi: 152/10/630 [pii] 10.1059/0003-4819-152-10-201005180-00003PubMedGoogle Scholar
  2. 2.
    Maffei E, Palumbo A, Martini C et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials. Radiol Med 115:368–384. doi: 10.1007/s11547-009-0492-5PubMedCrossRefGoogle Scholar
  3. 3.
    Maffei E, Palumbo A, Martini C et al (2010) Stress-ECG vs. CT coronary angiography for the diagnosis of coronary artery disease: a “real-world” experience. Radiol Med 115:354–367. doi: 10.1007/s11547-009-0456-9PubMedCrossRefGoogle Scholar
  4. 4.
    Maffei E, Messalli G, Palumbo A et al (2010) Left ventricular ejection fraction: real-world comparison between cardiac computed tomography and echocardiography in a large population. Radiol Med 115:1015–1027. doi: 10.1007/s11547-010-0542-zPubMedCrossRefGoogle Scholar
  5. 5.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of nonobstructive coronary artery disease. Eur Radiol 20:846–854. doi: 10.1007/s00330-009-1612-2PubMedCrossRefGoogle Scholar
  6. 6.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score. Eur Radiol 20:81–87. doi: 10.1007/s00330-009-1529-9PubMedCrossRefGoogle Scholar
  7. 7.
    Palumbo AA, Maffei E, Martini C et al (2009) Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 19:2127–2135. doi: 10.1007/s00330-009-1398-2PubMedCrossRefGoogle Scholar
  8. 8.
    Maffei E, Palumbo AA, Martini C et al (2009) “In-house” pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol 19:2931–2940 doi: 10.1007/s00330-009-1509-0PubMedCrossRefGoogle Scholar
  9. 9.
    Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-andshoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80PubMedCrossRefGoogle Scholar
  10. 10.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137PubMedCrossRefGoogle Scholar
  11. 11.
    Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogramtriggered high-pitch spiral acquisition. Eur Heart J 31:340–346. doi: ehp470 [pii] 10.1093/eurheartj/ehp470PubMedCrossRefGoogle Scholar
  12. 12.
    Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121. doi: S1934-5925(09)00084-7 [pii] 10.1016/j.jcct.2009.02.008PubMedCrossRefGoogle Scholar
  13. 13.
    Maffei E, Martini C, De Crescenzo S et al (2010) Low dose CT of the heart: a quantum leap into a new era of cardiovascular imaging. Radiol Med 115:1179–1207 doi: 10.1007/s11547-010-0566-4PubMedCrossRefGoogle Scholar
  14. 14.
    Martini C, Palumbo A, Maffei E et al (2009) Dose reduction in spiral CT coronary angiography with dual-source equipment. Part I. A phantom study applying different prospective tube current modulation algorithms. Radiol Med 114:1037–1052. doi: 10.1007/s11547-009-0437-zPubMedCrossRefGoogle Scholar
  15. 15.
    Martini C, Palumbo A, Maffei E et al (2010) Dose reduction in spiral CT coronary angiography with dual source equipment. Part II. Dose surplus due to slope-up and slope-down of prospective tube current modulation in a phantom model. Radiol Med 115:36–50. doi: 10.1007/s11547-010-0483-6PubMedCrossRefGoogle Scholar
  16. 16.
    Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497PubMedCrossRefGoogle Scholar
  17. 17.
    Kwok Y, Kim C, Grady D et al (1999) Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol 83:660–666. doi: S0002914998009631 [pii]PubMedCrossRefGoogle Scholar
  18. 18.
    Schuijf JD, Mollet NR, Cademartiri F et al (2006) Do risk factors influence the diagnostic accuracy of noninvasive coronary angiography with multislice computed tomography? J Nucl Cardiol 13:635–641. doi: S1071-3581(06)00430-2 [pii] 10.1016/j.nuclcard.2006.05.019PubMedCrossRefGoogle Scholar
  19. 19.
    Cademartiri F, Maffei E, Notarangelo F et al (2008) 64-slice computed tomography coronary angiography: diagnostic accuracy in the real world. Radiol Med 113:163–180. doi: 10.1007/s11547-008-0241-1PubMedCrossRefGoogle Scholar
  20. 20.
    Cademartiri F, Maffei E, Palumbo A et al (2007) Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk. Radiol Med 112:969–981. doi: 10.1007/s11547-007-0198-5PubMedCrossRefGoogle Scholar
  21. 21.
    Cademartiri F, Runza G, Marano R et al (2005) Diagnostic accuracy of 16-row multislice CT angiography in the evaluation of coronary segments. Radiol Med 109:91–97PubMedGoogle Scholar
  22. 22.
    Cademartiri F, Runza G, Mollet NR et al (2005) Impact of intravascular enhancement, heart rate, and calcium score on diagnostic accuracy in multislice computed tomography coronary angiography. Radiol Med 110:42–51PubMedGoogle Scholar
  23. 23.
    Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med 110:16–41PubMedGoogle Scholar
  24. 24.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392. doi: hrt.2006.112771 [pii] 10.1136/hrt.2006.112771PubMedCrossRefGoogle Scholar
  25. 25.
    Romagnoli A, Martuscelli E, Sperandio M et al (2010) Role of 64-slice cardiac computed tomography in the evaluation of patients with non-ST-elevation acute coronary syndrome. Radiol Med 115:341–353. doi: 10.1007/s11547-009-0482-7PubMedCrossRefGoogle Scholar
  26. 26.
    Huang WC, Liu CP, Wu MT et al (2010) Comparing culprit lesions in STsegment elevation and non-ST-segment elevation acute coronary syndrome with 64-slice multidetector computed tomography. Eur J Radiol 73:74–81. doi: S0720-048X(08)00525-1 [pii] 10.1016/j.ejrad.2008.09.024PubMedCrossRefGoogle Scholar
  27. 27.
    Huang WC, Wu MT, Chiou KR et al (2008) Assessing culprit lesions and active complex lesions in patients with early acute myocardial infarction by multidetector computed tomography. Circ J 72:1806–1813. doi: JST. JSTAGE/circj/CJ-08-0165 [pii]PubMedCrossRefGoogle Scholar
  28. 28.
    Huang WC, Chiou KR, Liu CP et al (2007) Multidetector row computed tomography can identify and characterize the occlusive culprit lesions in patients early (within 24 hours) after acute myocardial infarction. Am Heart J 154:914–922. doi: S0002-8703(07)00570-4 [pii] 10.1016/j.ahj.2007.07.002PubMedCrossRefGoogle Scholar
  29. 29.
    Hoffmann U, Bamberg F, Chae CU et al (2009) Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 53:1642–1650. doi: S0735-1097(09)00541-5 [pii] 10.1016/j.jacc.2009.01.052PubMedCrossRefGoogle Scholar
  30. 30.
    Chinnaiyan KM, Raff GL, Goldstein JA (2009) Cardiac CT in the emergency department. Cardiol Clin 27:587–596. doi: S0733-8651(09)00053-8 [pii] 10.1016/j.ccl.2009.06.002PubMedCrossRefGoogle Scholar
  31. 31.
    Goldstein JA, Gallagher MJ, O’Neill WW et al (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871. doi: S0735-1097(06)03007-5 [pii] 10.1016/j.jacc.2006.08.064PubMedCrossRefGoogle Scholar
  32. 32.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557. doi: S0735-1097(05)01314-8 [pii] 10.1016/j.jacc.2005.05.056PubMedCrossRefGoogle Scholar
  33. 33.
    Gallagher MJ, Ross MA, Raff GL et al (2007) The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med 49:125–136. doi: S0196-0644(06)00950-4 [pii] 10.1016/j.annemergmed.2006.06.043PubMedCrossRefGoogle Scholar
  34. 34.
    Bassand JP, Hamm CW, Ardissino D et al (2007) Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes. Eur Heart J 28:1598–1660. doi: ehm161 [pii] 10.1093/eurheartj/ehm161PubMedCrossRefGoogle Scholar
  35. 35.
    Van de Werf F, Bax J, Betriu A et al (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945. doi: ehn416 [pii] 10.1093/eurheartj/ehn416PubMedCrossRefGoogle Scholar
  36. 36.
    Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(Suppl 4):5–40PubMedGoogle Scholar
  37. 37.
    Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643PubMedCrossRefGoogle Scholar
  38. 38.
    Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention of The Council on Cardiovascular Radiology and Intervention, and The Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation 118:586–606PubMedCrossRefGoogle Scholar
  39. 39.
    Hein PA, Romano VC, Lembcke A et al (2009) Initial experience with a chest pain protocol using 320-slice volume MDCT. Eur Radiol 19:1148–1155PubMedCrossRefGoogle Scholar
  40. 40.
    Ladapo JA, Hoffmann U, Bamberg F et al (2008) Cost-effectiveness of coronary MDCT in the triage of patients with acute chest pain. AJR Am J Roentgenol 191:455–463PubMedCrossRefGoogle Scholar
  41. 41.
    Miller JM, Dewey M, Vavere AL et al (2009) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828. doi: 10.1007/s00330-008-1203-7PubMedCrossRefGoogle Scholar
  42. 42.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336. doi: 359/22/2324 [pii] 10.1056/NEJMoa0806576PubMedCrossRefGoogle Scholar
  43. 43.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732PubMedCrossRefGoogle Scholar
  44. 44.
    Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144. doi: S0735-1097(08)03234-8 [pii] 10.1016/j.jacc.2008.08.058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • E. Maffei
    • 1
  • C. Martini
    • 1
    • 2
  • C. Tedeschi
    • 3
  • P. Spagnolo
    • 4
  • A. Zuccarelli
    • 5
  • T. Arcadi
    • 6
  • A. Guaricci
    • 7
  • S. Seitun
    • 8
  • A. C. Weustink
    • 2
  • N. R. Mollet
    • 2
  • F. Cademartiri
    • 1
    • 2
  1. 1.Dipartimento di Radiologia e del Cardio-PolmonareAzienda Ospedaliero-Universitaria di ParmaParmaItaly
  2. 2.Dipartimento di Radiologia e CardiologiaErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Dipartimento di Radiologia e CardiologiaOspedale San GennaroNapoliItaly
  4. 4.CPC — Centro Prevenzione CardiovascolareOspedale San RaffaeleMilanoItaly
  5. 5.Dipartimento di Radiologia e CardiologiaAzienda ASLCarraraItaly
  6. 6.Dipartimento di RadiologiaUniversità di MessinaMessinaItaly
  7. 7.Dipartimento di CardiologiaUniversità di FoggiaFoggiaItaly
  8. 8.Dipartimento di RadiologiaAzienda Ospedaliero-Universitaria “San Martino”GenovaItaly

Personalised recommendations