La radiologia medica

, Volume 116, Issue 5, pp 675–689 | Cite as

Evaluation with 64-slice CT of the prevalence of coronary artery variants and congenital anomalies: a retrospective study of 3,236 patients

  • G. Bazzocchi
  • A. Romagnoli
  • M. Sperandio
  • G. Simonetti
Cardiac Radiology / Cardioradiologia



This study retrospectively evaluated the prevalence of anatomical coronary artery variants and congenital anomalies in 3,236 patients imaged with 64-slice computed tomography (CT).

Materials and methods

Over a period of 4 years, 3,236 patients underwent CT coronary angiography performed with the standard protocol. We assessed coronary artery dominance, presence of the intermediate branch, presence and number of diagonal and marginal branches and coronary anomalies subdivided into anomalies of origin and course, intrinsic anomalies and termination anomalies.


Coronary dominance was right-sided in 88.1% of patients; the intermediate branch was present in 21.3%, the number of diagonal and marginal branches was one to two in >90%, and the number of coronary anomalies was 224 (89 of origin and course, 129 intrinsic anomalies and six termination anomalies).


Sixty-four-slice CT coronary angiography provides accurate three-dimensional evaluation of the coronary artery tree with correct visualisation of any coronary anomalies, a relatively common finding that had a prevalence of 5.7% in our study population.


Coronary anomalies CT Anatomical variants Congenital anomalies 

Valutazione della prevalenza delle varianti anatomiche e delle anomalie congenite del circolo coronarico mediante TC volumetrica 64-strati: studio retrospettivo su 3236 pazienti


Obiettivo o]Scopo del nostro lavoro è stato valutare con uno studio retrospettivo la prevalenza di varianti anatomiche ed anomalie coronariche in una popolazione di 3236 pazienti

Materiali e metodi

Un totale di 3236 pazienti è stato sottoposto a tomografia computerizzata (TC)-64 strati delle coronarie in 4 anni, utilizzando il protocollo standard. È stata valutata: la dominanza coronarica, la presenza del ramo intermedio, la presenza e il numero di rami diagonali e marginali, le anomalie coronariche (AC) suddividendole in anomalie di origine e decorso, intrinseche e di terminazione.


È stata riscontrata una dominanza destra nel 88,1% dei casi, il ramo intermedio nel 21,3%, la presenza di 1–2 rami diagonali e marginali in più del 90%, 224 AC (89 di origine e decorso, 129 intrinseche e 6 di terminazione).


La TC volumetrica consente un’accurata valutazione tridimensionale del circolo coronarico con visualizzazione delle anomalie coronariche che rappresentano un reperto relativamente comune nella popolazione con prevalenza del 5,7%.

Parole chiave

Anomalie coronariche TC coronarica Varianti anatomiche Anomalie congenite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cademartiri F, Runza G, Luccichenti G et al (2006) Coronary artery anomalies: incidence, pathophysiology, clinical relevance and role of diagnostic imaging. Radiol Med 111:376–391PubMedCrossRefGoogle Scholar
  2. 2.
    Jureidini SB, Nouri S, Crawford CJ et al (1991) Reliability of echocardiography in the diagnosis of anomalous origin of the left coronary artery from the pulmonary trunk. Am Heart J 122:61–68PubMedCrossRefGoogle Scholar
  3. 3.
    Davis JA, Cecchin F, Jones TK et al (2001) Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 37:593–597PubMedCrossRefGoogle Scholar
  4. 4.
    Gaither NS, Rogan KM, Stajduhar K et al (1991) Anomalous origin and course of coronary arteries in adults: identification and improved imaging utilizing transesophageal echocardiography. Am Heart J 122:69–75PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor AM, Thorne SA, Rubens MB et al (2000) Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and X-ray coronary angiography. Circulation 101:1670–1678PubMedGoogle Scholar
  6. 6.
    Duerinckx AJ, Shaaban A, Lewis A et al (2000) 3D MR imaging of coronary arteriovenous fistulas. Eur Radiol 10:1459–1463PubMedCrossRefGoogle Scholar
  7. 7.
    Ropers D, Moshage W, Daniel WG et al (2001) Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol 87:193–197PubMedCrossRefGoogle Scholar
  8. 8.
    Hunold P, Vogt FM, Schmermund A et al (2003) Radiation exposure during cardiac CT: effective doses at multidetector row CT and electron-beam CT. Radiology 226:145–152PubMedCrossRefGoogle Scholar
  9. 9.
    Mollet N, Cademartiri E, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270PubMedCrossRefGoogle Scholar
  10. 10.
    Nieman K, Rensing B, van Geuns R et al (2002) Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 88:470–474PubMedCrossRefGoogle Scholar
  11. 11.
    Mühlenbruch G, Seyfarth T, Soo CS et al (2007) Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol 17:603–609PubMedCrossRefGoogle Scholar
  12. 12.
    Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582PubMedCrossRefGoogle Scholar
  13. 13.
    Luccichenti G, Cademartiri F, Romana Pezzella F et al (2005) 3D reconstruction techniques made easy: know-how and pictures. Eur Radiol 15:2146–2156PubMedCrossRefGoogle Scholar
  14. 14.
    Cademartiri F, Malagò R, La Grutta L et al (2007) Coronary variants and anomalies: methodology of visualisation with 64-slice CT and prevalence in 202 consecutive patients. Radiol Med 112:1117–1131PubMedCrossRefGoogle Scholar
  15. 15.
    Cademartiri F, La Grutta L, Malagò R et al (2008) Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography. 543 consecutive patients studied with 64-slice CT coronary angiography. Eur Radiol 18:781–791PubMedCrossRefGoogle Scholar
  16. 16.
    Schmid M, Achenbach S, Ludwig J et al (2006) Visualization of coronary artery anomalies by contrast-enhanced multi-detector row spiral tomography. Int J Cardiol 111:430–435PubMedCrossRefGoogle Scholar
  17. 17.
    Schmitt R, Froehner S, Brunn J et al (2005) Congenital anomalies of the coronary arteries: imaging with contrast enhanced, multidetector computed tomography. Eur Radiol 15:1110–1121PubMedCrossRefGoogle Scholar
  18. 18.
    Maron BJ, Thompson PD, Puffer JC et al (1996) Cardiovascular preparticipation screening of competitive athletes: a statement for health professionals from the Sudden Death Committee (Clinical Cardiology) and Congenital Cardiac Defects Committee (Cardiovascular Disease in the young), American Heart Association. Circulation 94:850–856PubMedGoogle Scholar
  19. 19.
    Angelini P, Velasco JA, Flamm S (2002) Coronary anomalies: incidence, pathophysiology, and clinical rilevance. Circulation 105:2449–2454PubMedCrossRefGoogle Scholar
  20. 20.
    Mookadam F, Green J, Holmes D et al (2008). Clinical relevance of myocardial bridging severety: single center experience. Eur J Clin Invest 39:110–115CrossRefGoogle Scholar
  21. 21.
    Ko SM (2008) An overview of myocardial bridging with a focus on multidetector CT coronary angiographic findings. Korean Circ J 38:583–589CrossRefGoogle Scholar
  22. 22.
    Ko SM, Choi JS, Nam CW, Hur SH (2008) Incidence and clinical significance of myocardial bridging with ECG-gated 16-row MDCT coronary angiography. Int J Cardiovascular Imaging 24:445–452CrossRefGoogle Scholar
  23. 23.
    La Grutta L, Runza G, Lo Re G et al (2009) Prevalence of myocardial bridging and correlation with coronary atherosclerosis studied with 64-slice CT coronary angiography. Radiol Med 114:1024–1036PubMedCrossRefGoogle Scholar
  24. 24.
    Click RL, Holmes DR Jr, Vlietstra RE et al (1989) Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival-a report from the Coronary Artery Surgery Study. J Am Coll Cardiol 13:531–537PubMedCrossRefGoogle Scholar
  25. 25.
    Liberthson RR, Sagar K, Berkoben J et al (1979) Congenital coronary arteriovenous fistula. Report of 13 patients, review of the litterature and delineation of menagement. Circulation 59:849–854PubMedGoogle Scholar
  26. 26.
    Kardos A, Babai L, Rudas L et al (1997) Epidemiology of congenital coronary artery anomalies: a coronary arteriography study on a central European population. Cathet Cardiovasc Diagn 42:270–275PubMedCrossRefGoogle Scholar
  27. 27.
    Velican D, Petrescu C, Velican C (1981) The branching anatomical pattern of the coronary arteries as a risk factor for coronary heart disease. Med Interne 19:173–183Google Scholar
  28. 28.
    Malagò R, D’Onofrio M, Brunelli S et al (2010) Anatomical variants and anomalies of the coronary tree studied with MDCT coronary angiography. Radiol Med 115:679–692. DOI 1007/s11547-010-0522-3PubMedCrossRefGoogle Scholar
  29. 29.
    Rigatelli G, Rigatelli G (2003) Coronary artery anomalies: what we know and what we have to learn. A proposal for a new clinical classification. Ital Heart J 4:305–310PubMedGoogle Scholar
  30. 30.
    Dooley M, Jarvis B (2000) Iomeprol: a review of its use as a contrast medium. Drugs 59:1169–1186PubMedCrossRefGoogle Scholar
  31. 31.
    Goo HW, Seo DM, Yun TJ et al (2009) Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol 39:265–273PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • G. Bazzocchi
    • 1
  • A. Romagnoli
    • 1
  • M. Sperandio
    • 1
  • G. Simonetti
    • 1
  1. 1.Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiation TherapyPoliclinico “Tor Vergata”RomaItaly

Personalised recommendations