Advertisement

La radiologia medica

, Volume 116, Issue 2, pp 264–275 | Cite as

Diffusion-weighted magnetic resonance imaging in focal breast lesions: analysis of 78 cases with pathological correlation

  • F. FornasaEmail author
  • L. Pinali
  • A. Gasparini
  • E. Toniolli
  • S. Montemezzi
Breast Radiology / Senologia

Abstract

Purpose

This study assessed the usefulness of magnetic resonance diffusion-weighted imaging (DWI) in distinguishing between benign and malignant breast lesions.

Materials and methods

Gadolinium-enhanced magnetic resonance imaging (MRI) and DWI with determination of the apparent diffusion coefficient (ADC) were performed on 78 women, each with a focal breast lesion at least 7 mm in diameter, which was studied by cytology or histology.

Results

Final diagnoses were obtained by cytology in 29 cases and histology in 49 (11 percutaneous biopsies and 38 surgical specimens). There were 43 benign lesions (13 fibrocystic disease, eight fibroadenoma, seven adenosis, five normal breast tissue, four inflammatory lesions, three intramammary lymph nodes, two scleroelastosis and one fat necrosis) and 35 malignant lesions (30 invasive ductal carcinoma, two invasive lobular carcinoma, one ductal carcinoma in situ, one carcinomatous mastitis and one metastasis from neuroendocrine carcinoma). The mean ADC values were 1.677±0.151 for benign lesions and 1.298±0.129 for malignant lesions (p<0.001). With an ADC cutoff value of 1.48, DWI had 88.6% sensitivity [confidence interval (CI) 78.1%–99.1%] and 95.3% specificity (CI 88.9%–100%), with 31 true positives, four false negatives (three invasive ductal carcinoma and one carcinomatous mastitis), 41 true negatives and two false positives (one fat necrosis and one fibroadenoma). With the cutoff value set at 1.52, DWI sensitivity (35 true positive, no false negative) was 100% and specificity was 86% (CI 75.7%–96.3%) due to 37 true negatives and six false positives (an additional two fibroadenoma and two fibrocystic disease compared with those recorded with the cutoff set at 1.48). The overall accuracy of DWI considering both cutoff values (72 correct evaluations out of 78 cases) was 92.3% (CI 86.4%–98.2%).

Conclusions

DWI is a reliable tool for characterising focal breast lesions.

Keywords

Breast cancer Magnetic resonance imaging Diffusion weighted imaging 

Risonanza magnetica in diffusione nella tipizzazione delle lesioni focali della mammella: analisi di 78 casi sottoposti a controllo anatomopatologico

Parole chiave

Carcinoma mammario Risonanza magnetica Diffusione RM 

Riassunto

Obiettivo

Scopo del nostro lavoro è stato stabilire l’utilità dell’imaging in risonanza magnetica (RM) pesata in diffusione (DWI) nel distinguere le lesioni mammarie benigne da quelle maligne.

Materiali e metodi

La RM con mezzo di contrasto e la DWI, con misurazione del coefficiente di diffusione apparente (ADC), sono state eseguite in 78 pazienti di sesso femminile, ognuna portatrice di una lesione focale della mammella con diametro di almeno 7 mm sottoposta ad indagine citologica o bioptica.

Risultati

La diagnosi finale è stata ottenuta mediante citologia in 29 casi ed istologia in 49 (11 biopsie percutanee e 38 pezzi operatori). 43 lesioni sono risultate benigne (13 casi di mastopatia fibrocistica, 8 di fibroadenoma, 7 di adenosi, 5 di tessuto mammario normale, 4 di lesioni flogistiche, 3 di linfonodi intramammari, 2 di scleroelastosi ed 1 di steatonecrosi) e 35 maligne (30 carcinomi duttali infiltranti, 2 carcinomi lobulari infiltranti, 1 carcinoma duttale in situ, 1 mastite carcinomatosa ed 1 metastasi da carcinoma neuroendocrino). I valori medi di ADC sono risultati di 1,677±0,151 per le lesioni benigne e di 1,298±0,129 per quelle maligne (p<0,001). Ponendo il cut off di ADC pari a 1,48, la DWI ha raggiunto una sensibilità (31 veri positivi; 4 falsi negativi, rappresentati da 3 carcinomi duttali infiltranti e da una mastite carcinomatosa) dell’88,6% (intervallo di confidenza [IC]: 78,1%–99,1%) ed una specificità (41 veri negativi; 2 falsi positivi, dovuti ad un caso di steatonecrosi e ad un fibroadenoma) del 95,3% (IC: 88,9%–100%). Con il cut off di 1,52, la sensibilità (35 veri positivi; nessun falso negativo) è risultata del 100% e la specificità (37 veri negativi; 6 falsi positivi, per l’aggiunta ai due falsi positivi riscontrati con cut off di 1,48 di 2 fibroadenomi e 2 casi di mastopatia fibrocistica) dell’86% (IC: 75,7%–96,3%). Con entrambi i cut off l’accuratezza globale della DWI (72 risultati esatti su 78 casi) è stata del 92,3% (IC: 86,4%–98,2%).

Conclusioni

La DWI è uno strumento affidabile nella tipizzazione delle lesioni focali mammarie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Liu PF, Debatin JF, Caduff RF et al (1998) Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol 71:501–509PubMedGoogle Scholar
  2. 2.
    Sinha S, Lucas-Quesada FA, Debruhl ND et al (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026PubMedCrossRefGoogle Scholar
  3. 3.
    Sardanelli F, Giuseppetti GM, Canavese G et al (2008) Indications for breast magnetic resonance imaging. Consensus Document “Attualità in Senologia”, Florence 2007. Radiol Med 113:1085–1095PubMedCrossRefGoogle Scholar
  4. 4.
    Bluemke DA, Gatsonis CA, Chen MH et al (2004) Magnetic resonance imaging of the breast prior to biopsy. JAMA 292:2735–2742PubMedCrossRefGoogle Scholar
  5. 5.
    Boetes C, Barentsz JO, Mus RD et al (1994) MR characterization of suspicious breast lesions with a gadoliunium-enhanced TurboFLASH subtraction technique. Radiology 193:777–781PubMedGoogle Scholar
  6. 6.
    Buadu LD, Murakami J, Murayama S et al (1996) Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 200:639–649PubMedGoogle Scholar
  7. 7.
    Gilles R, Guinebretiere JM, Lucidarme O et al (1994) Nonpalpable breast tumors: diagnosis with contrast.enhanced subtraction dynamic MR imaging. Radiology 191:625–631PubMedGoogle Scholar
  8. 8.
    Siegmann KC, Mueller-Schimpfle M, Schick F et al (2002) MRI imaging-detected breast lesion: histopathologic correlation of lesion characteristics and signal intensity data. AJR Am J Roentgenol 178:1403–1409PubMedGoogle Scholar
  9. 9.
    Esserman L, Hylton N, Yassa L et al (1999) Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol 17:110–119PubMedGoogle Scholar
  10. 10.
    Gundry KR (2005) The application of breast MRI in staging and screening for breast cancer. Oncology 19:159–169PubMedGoogle Scholar
  11. 11.
    Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110PubMedGoogle Scholar
  12. 12.
    Morris EA, Liberman L, Ballon DJ et al (2003) MRI of occult breast carcinoma on a high-risk population. AJR Am J Roentgenol 181:619–626PubMedGoogle Scholar
  13. 13.
    Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220:13–30PubMedGoogle Scholar
  14. 14.
    Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178. DOI 10.1002/jmri.10140PubMedCrossRefGoogle Scholar
  15. 15.
    Hatakenaka M, Soeda H, Yabuuchi H et al (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29PubMedCrossRefGoogle Scholar
  16. 16.
    Park MJ, Cha ES, Kang BJ et al (2007) The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors. Kor J Radiol 8:390–396CrossRefGoogle Scholar
  17. 17.
    Huang W, Fisher PR, Dulaimy K et al (2004) Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 232:585–591PubMedCrossRefGoogle Scholar
  18. 18.
    Kinkel K, Helbich TH, Esserman LJ et al (2000) Dynamic high-spatial-resolution MR imaging of suspicious breast lesions: diagnostic criteria and interobserver variability. AJR Am J Roentgenol 175:35–43PubMedGoogle Scholar
  19. 19.
    Kuroki Y, Nasu K, Kuroki-Suzuki S et al (2004) Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 3:79–85PubMedCrossRefGoogle Scholar
  20. 20.
    Nasu K, Kuroki Y, Nawano S et al (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130PubMedCrossRefGoogle Scholar
  21. 21.
    Kuroki-Suzuki S, Kuroki Y, Nasu K et al (2007) Detecting breast cancer with non-contrast MR Imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 6:21–27PubMedCrossRefGoogle Scholar
  22. 22.
    Schmithorst VJ, Dardzinski BJ, Holland SK (2001) Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan. IEEE Trans Med Imaging 20:535–539PubMedCrossRefGoogle Scholar
  23. 23.
    Matsuoka A, Minato M, Harada M et al (2008) Comparison of 3.0- and 1.5-tesla diffusion-weighted imaging in the visibility of breast cancer. Radiat Med 26:15–20. DOI 10.1007/s11604-007-0187-6PubMedCrossRefGoogle Scholar
  24. 24.
    Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184PubMedCrossRefGoogle Scholar
  25. 25.
    Ichikawa T, Haradome H, Hachiya J et al (1998) Diffusion-weighted MR imaging with single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol 170:397–402PubMedGoogle Scholar
  26. 26.
    Kim T, Muratami T, Takahashi S et al (1999) Diffusion weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 173:393–398PubMedGoogle Scholar
  27. 27.
    Moteki T, Ishizaka H (2000) Diffusionweighted EPI of cystic ovarian lesions: evaluation of cystic contents using apparent diffusion coefficients. J Magn Reson Imaging 12:1014–1019PubMedCrossRefGoogle Scholar
  28. 28.
    Sinha S, Lucas-Quesada FA, Sinha U et al (2002) In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 15:693–704PubMedCrossRefGoogle Scholar
  29. 29.
    Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 4:35–42PubMedCrossRefGoogle Scholar
  30. 30.
    Yamada I, Aung W, Himeno Y et al (1999) Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210:617–623PubMedGoogle Scholar
  31. 31.
    Yabuuchi H, Matsuo Y, Okafuji T et al (2008) Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging 28:1157–1165. DOI 10.1102/jmri.21570PubMedCrossRefGoogle Scholar
  32. 32.
    Pilatus U, Shim H, Artemov D et al (1997) Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med 37:825–832PubMedCrossRefGoogle Scholar
  33. 33.
    Sinha S, Sinha U (2002) Functional magnetic resonance of human breast tumors: diffusion and perfusion imaging. Ann NY Acad Sci 980:95–115PubMedCrossRefGoogle Scholar
  34. 34.
    Kinoshita T, Yashiro N, Ihara N et al (2002) Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 26:1042–1046PubMedCrossRefGoogle Scholar
  35. 35.
    Rubesova E, Grell AS, De Maertelaer V et al (2006) Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 24:319–324PubMedCrossRefGoogle Scholar
  36. 36.
    Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649PubMedCrossRefGoogle Scholar
  37. 37.
    Le Bihan D Breton E, Laillemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  38. 38.
    Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshikawa MI, Ohsumi S, Sugata S et al (2008) Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 26:222–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • F. Fornasa
    • 1
    Email author
  • L. Pinali
    • 1
  • A. Gasparini
    • 1
  • E. Toniolli
    • 1
  • S. Montemezzi
    • 2
  1. 1.Department of RadiologyOspedale Scaligero VeroneseS. Bonifacio, VeronaItaly
  2. 2.Department of RadiologyOspedale Civile MaggioreVeronaItaly

Personalised recommendations