La radiologia medica

, Volume 115, Issue 8, pp 1179–1207 | Cite as

Low dose CT of the heart: a quantum leap into a new era of cardiovascular imaging

  • E. Maffei
  • C. Martini
  • S. De Crescenzo
  • T. Arcadi
  • A. Clemente
  • E. Capuano
  • A. Rossi
  • R. Malagò
  • N. Mollet
  • A. Weustink
  • C. Tedeschi
  • L. La Grutta
  • S. Seitun
  • A. Igoren Guaricci
  • F. Cademartiri
Cardiac Radiology / Cardioradiologia

Abstract

In 10 years, computed tomography coronary angiography (CTCA) has shifted from an investigational tool to clinical reality. Even though CT technologies are very advanced and widely available, a large body of evidence supporting the clinical role of CTCA is missing. The reason is that the speed of technological development has outpaced the ability of the scientific community to demonstrate the clinical utility of the technique. In addition, with each new CT generation, there is a further broadening of actual and potential applications. In this review we examine the state of the art on CTCA. In particular, we focus on issues concerning technological development, radiation dose, implementation, training and organisation.

Keywords

Computed tomography coronary angiography Conventional coronary angiography Coronary artery disease Radiation dose Training 

La TC del cuore a bassa dose: un salto epocale nella nuova era dell’imaging cardiovascolare

Riassunto

L’angiografia coronarica con tomografia computerizzata (CTCA) è passata in 10 anni da strumento di ricerca investigativa a strumento clinico di uso routinario. Anche se le tecnologie sono molto diffuse ed avanzate, la maggioranza delle evidenze non supportano ancora in modo forte l’utilizzo di questa metodica. La causa di questo risiede probabilmente nel fatto che la velocità dell’evoluzione tecnologica ha superato ampiamente la capacità del mondo scientifico di sviluppare dati che definiscano meglio il campo di utilizzo. A questo si aggiunge il fatto che ad ogni nuova generazione di apparecchi per la tomografia computerizzata (TC) le reali e potenziali applicazioni si espandono ulteriormente. Abbiamo revisionato lo stato dell’arte corrente sulla CTCA. In particolare, vengono approfonditi gli aspetti inerenti l’evoluzione tecnologica, la dose da radiazioni ionizzanti, l’implementazione, il training e l’organizzazione.

Parole chiave

Angiografia coronarica con tomografia computerizzata Angiografia coronarica convenzionale Malattia aterosclerotica coronarica Dose di radiazioni Formazione 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice computed tomography. Radiol Med (Torino) 110:16–41Google Scholar
  2. 2.
    Nieman K, Oudkerk M, Rensig BJ et al (2001) Coronary angiography with multislice computed tomography. Lancet 357:599–603CrossRefPubMedGoogle Scholar
  3. 3.
    Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437CrossRefPubMedGoogle Scholar
  4. 4.
    Pugliese F, Mollet NR, Hunink MG et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246:384–393CrossRefPubMedGoogle Scholar
  5. 5.
    Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NAS CI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497CrossRefPubMedGoogle Scholar
  6. 6.
    Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606CrossRefPubMedGoogle Scholar
  7. 7.
    Schroeder S, Achenbach S, Bengel F et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29:531–556CrossRefPubMedGoogle Scholar
  8. 8.
    Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381CrossRefPubMedGoogle Scholar
  9. 9.
    Di Tanna GL, Berti E, Stivanello E et al (2008) Informative value of clinical research on multislice computed tomography in the diagnosis of coronary artery disease: a systematic review. Int J Cardiol 130:386–404CrossRefPubMedGoogle Scholar
  10. 10.
    Mowatt G, Cook JA, Hillis GS et al (2008) 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart 94:1386–1393CrossRefPubMedGoogle Scholar
  11. 11.
    Mowatt G, Cummins E, Waugh N et al (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12:iii–iv, ix–143Google Scholar
  12. 12.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336CrossRefPubMedGoogle Scholar
  13. 13.
    Miller JM, Dewey M, Vavere AL et al (2008) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828CrossRefPubMedGoogle Scholar
  14. 14.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64- multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732CrossRefPubMedGoogle Scholar
  15. 15.
    Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123CrossRefPubMedGoogle Scholar
  16. 16.
    Malago R, D’Onofrio M, Baglio I et al (2009) Choice strategy of different dose-saving protocols in 64-slice MDCT coronary angiography. Radiol Med 114:1196–1213CrossRefPubMedGoogle Scholar
  17. 17.
    Maffei E, Palumbo AA, Martini C et al (2009) “In-house” pharmacological management for computed tomography coronary angiography: heart rate reduction, timing and safety of different drugs used during patient preparation. Eur Radiol, in pressGoogle Scholar
  18. 18.
    Palumbo AA, Maffei E, Martini C et al (2009) Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 19:2127–2135CrossRefPubMedGoogle Scholar
  19. 19.
    Redberg RF, Walsh J (2008) Pay now, benefits may follow-the case of cardiac computed tomographic angiography. N Engl J Med 359:2309–2311CrossRefPubMedGoogle Scholar
  20. 20.
    Douglas PS, Redberg RF, Blumenthal RS et al (2008) Imaging for coronary risk assessment: ready for prime time? JACC Cardiovasc Imaging 1:263–265CrossRefPubMedGoogle Scholar
  21. 21.
    Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-andshoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80CrossRefPubMedGoogle Scholar
  22. 22.
    Weustink AC, Mollet NR, Neefjes LA et al (2009) Preserved diagnostic performance of dual-source CT coronary angiography with reduced radiation exposure and cancer risk. Radiology 252:53–60CrossRefPubMedGoogle Scholar
  23. 23.
    Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798CrossRefPubMedGoogle Scholar
  24. 24.
    Min JK, Swaminathan RV, Vass M et al (2009) High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J Cardiovasc Comput Tomogr 3:246–251CrossRefPubMedGoogle Scholar
  25. 25.
    Hein PA, Romano VC, Lembcke A et al (2009) Initial experience with a chest pain protocol using 320-slice volume MDCT. Eur Radiol 19:1148–1155CrossRefPubMedGoogle Scholar
  26. 26.
    Lembcke A, Hein PA, Borges AC et al (2009) One-stop-shop cardiac diagnosis in a single heart beat using 320-slice computed tomography: ascending aortic aneurysm, hypertrophic cardiomyopathy and mixed valvular heart disease. Eur J Cardiothorac Surg 35:726CrossRefPubMedGoogle Scholar
  27. 27.
    Steigner ML, Otero HJ, Cai T et al (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25:85–90CrossRefPubMedGoogle Scholar
  28. 28.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546CrossRefPubMedGoogle Scholar
  29. 29.
    Hausleiter J, Bischoff B, Hein F et al (2009) Feasibility of dual-source cardiac CT angiography with high-pitch scan protocols. J Cardiovasc Comput Tomogr 3:236–242CrossRefPubMedGoogle Scholar
  30. 30.
    Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121CrossRefPubMedGoogle Scholar
  31. 31.
    Cademartiri F (2009) Cardiac CT: the missing piece of the puzzle. Eur Radiol 19:2584–2585CrossRefPubMedGoogle Scholar
  32. 32.
    Lell M, Marwan M, Schepis T et al (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19:2576–2583CrossRefPubMedGoogle Scholar
  33. 33.
    Efstathopoulos EP, Kelekis NL, Pantos I et al (2009) Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography. Phys Med Biol 54:5209–5222CrossRefPubMedGoogle Scholar
  34. 34.
    Bardo DM, Asamato J, Mackay CS et al (2009) Low-dose coronary artery computed tomography angiogram of an infant with tetralogy of fallot using a 256-slice multidetector computed tomography scanner. Pediatr Cardiol 30:824–826CrossRefPubMedGoogle Scholar
  35. 35.
    Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. Jama 301:500–507CrossRefPubMedGoogle Scholar
  36. 36.
    Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086CrossRefPubMedGoogle Scholar
  37. 37.
    Francone M, Napoli A, Carbone I et al (2007) Noninvasive imaging of the coronary arteries using a 64-row multidetector CT scanner: initial clinical experience and radiation dose concerns. Radiol Med 112:31–46CrossRefPubMedGoogle Scholar
  38. 38.
    Feuchtner GM, Jodocy D, Klauser A et al (2009) Radiation dose reduction by using 100-kV tube voltage in cardiac 64-slice computed tomography: a comparative study. Eur J Radiol, in pressGoogle Scholar
  39. 39.
    Bischoff B, Hein F, Meyer T et al (2009) Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging 2:940–946CrossRefPubMedGoogle Scholar
  40. 40.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137CrossRefPubMedGoogle Scholar
  41. 41.
    Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430CrossRefPubMedGoogle Scholar
  42. 42.
    Pontone G, Andreini D, Bartorelli AL et al (2009) Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 54:346–355CrossRefPubMedGoogle Scholar
  43. 43.
    Ertel D, Lell MM, Harig F et al (2009) Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur Radiol 19:2357–2362CrossRefPubMedGoogle Scholar
  44. 44.
    Penfold SN, Rosenfeld AB, Schulte RW et al (2009) A more accurate reconstruction system matrix for quantitative proton computed tomography. Med Phys 36:4511–4518CrossRefPubMedGoogle Scholar
  45. 45.
    Einstein AJ, Sanz J, Dellegrottaglie S et al (2008) Radiation dose and cancer risk estimates in 16-slice computed tomography coronary angiography. J Nucl Cardiol 15:232–240CrossRefPubMedGoogle Scholar
  46. 46.
    Herzog BA, Wyss CA, Husmann L et al (2009) First head-to-head comparison of effective radiation dose from low-dose CT with prospective ECG-triggering versus invasive coronary angiography. Heart 95:1656–1661CrossRefPubMedGoogle Scholar
  47. 47.
    Raff GL, Chinnaiyan KM, Share DA et al (2009) Radiation dose from cardiac computed tomography before and after implementation of radiation dosereduction techniques. Jama 301:2340–2348CrossRefPubMedGoogle Scholar
  48. 48.
    UNSCEAR (2000) United Nations Scientific Committee on the effects of atomic radiation — 2000 Report, Medical radiation exposures. Annex D. UNSCEARGoogle Scholar
  49. 49.
    ICRP-103 (2007) The 2007 Recommendations of the International Commission on Radiological Protection. International Commission on Radiological ProtectionGoogle Scholar
  50. 50.
    von Boetticher H, Lachmund J, Hoffmann W (2008) Effective dose estimation in diagnostic radiology with two dosimeters: impact of the 2007 recommendations of the ICRP. Health Phys 95:337–340CrossRefGoogle Scholar
  51. 51.
    Matsubara K, Koshida K, Suzuki M et al (2009) Effective dose evaluation of multidetector CT examinations: influence of the ICRP recommendation in 2007. Eur Radiol, in pressGoogle Scholar
  52. 52.
    European-Commission. (2008) European Guidance on Estimatine Population Doses from Medical X-Ray Procedures. Directorate-General for Energy and Transport Directorate H — Nuclear Energy Unit H4 — Radiation Protection Radiation Protection No 154Google Scholar
  53. 53.
    Tubiana M, Feinendegen LE, Yang C et al (2009) The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 251:13–22CrossRefPubMedGoogle Scholar
  54. 54.
    Little MP, Wakeford R, Tawn EJ et al (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12CrossRefPubMedGoogle Scholar
  55. 55.
    Lauer MS (2009) Elements of danger — the case of medical imaging. N Engl J Med 361:841–843CrossRefPubMedGoogle Scholar
  56. 56.
    Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857CrossRefPubMedGoogle Scholar
  57. 57.
    Stacul F, Sironi D, Grisi G et al (2009) 64-Slice CT coronary angiography versus conventional coronary angiography: activity-based cost analysis. Radiol Med 114:239–252CrossRefPubMedGoogle Scholar
  58. 58.
    Min JK, Kang N, Shaw LJ et al (2008) Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT. Radiology 249:62–70CrossRefPubMedGoogle Scholar
  59. 59.
    Min JK, Shaw LJ, Berman DS et al (2008) Costs and clinical outcomes in individuals without known coronary artery disease undergoing coronary computed tomographic angiography from an analysis of Medicare category III transaction codes. Am J Cardiol 102:672–678CrossRefPubMedGoogle Scholar
  60. 60.
    Min JK, Shaw LJ, Berman DS (2008) Cost-effective applications of cardiac computed tomography in coronary artery disease. Expert Rev Cardiovasc Ther 6:43–55CrossRefPubMedGoogle Scholar
  61. 61.
    Min JK, Robinson M, Shaw LJ et al (2008) Differences in episode-based care costs for multidetector computed tomographic coronary angiography versus myocardial perfusion imaging for the diagnosis of coronary artery disease. J Med Econ 11:327–340PubMedGoogle Scholar
  62. 62.
    Khare RK, Courtney DM, Powell ES et al (2008) Sixty-four-slice computed tomography of the coronary arteries: cost-effectiveness analysis of patients presenting to the emergency department with low-risk chest pain. Acad Emerg Med 15:623–632CrossRefPubMedGoogle Scholar
  63. 63.
    Dewey M, Hamm B. (2007) Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol 17:1301–1309CrossRefPubMedGoogle Scholar
  64. 64.
    Ladapo JA, Hoffmann U, Bamberg F et al (2008) Cost-effectiveness of coronary MDCT in the triage of patients with acute chest pain. AJR Am J Roentgenol 191:455–463CrossRefPubMedGoogle Scholar
  65. 65.
    Pugliese F, Hunink MG, Gruszczynska K et al (2009) Learning curve for coronary CT angiography: what constitutes sufficient training? Radiology 251:359–368CrossRefPubMedGoogle Scholar
  66. 66.
    van Kuijk C, Grashuis JL, Steenbeek JC et al (1990) Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 2. Practical aspects. Invest Radiol 25:882–889CrossRefPubMedGoogle Scholar
  67. 67.
    Baks T, Cademartiri F, Moelker AD et al (2006) Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol 48:144–152CrossRefPubMedGoogle Scholar
  68. 68.
    Hyafil F, Cornily JC, Rudd JH et al (2009) Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 50:959–965CrossRefPubMedGoogle Scholar
  69. 69.
    George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160CrossRefPubMedGoogle Scholar
  70. 70.
    Goldstein JA, Gallagher MJ, O’Neill WW et al (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871CrossRefPubMedGoogle Scholar
  71. 71.
    Naghavi M, Falk E, Hecht HS et al (2006) From vulnerable plaque to vulnerable patient—Part III: Executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol 98:2H–15HCrossRefPubMedGoogle Scholar
  72. 72.
    Pundziute G, Schuijf JD, Jukema JW et al (2007) Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 49:62–70CrossRefPubMedGoogle Scholar
  73. 73.
    Min JK, Shaw LJ, Devereux RB et al (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50:1161–1170CrossRefPubMedGoogle Scholar
  74. 74.
    Aldrovandi A, Maffei E, Palumbo A et al (2009) Prognostic value of computed tomography coronary angiography in patients with suspected coronary artery disease: a 24-month follow-up study. Eur Radiol 19:1653–1660CrossRefPubMedGoogle Scholar
  75. 75.
    Cademartiri F, Seitun S, Romano M et al (2008) Prognostic value of 64-slice coronary angiography in diabetes mellitus patients with known or suspected coronary artery disease compared with a nondiabetic population. Radiol Med 113:627–643CrossRefPubMedGoogle Scholar
  76. 76.
    van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Incremental prognostic value of multi-slice computed tomography coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J 30:2622–2629CrossRefPubMedGoogle Scholar
  77. 77.
    Gaemperli O, Valenta I, Schepis T et al (2008) Coronary 64-slice CT angiography predicts outcome in patients with known or suspected coronary artery disease. Eur Radiol 18:1162–1173CrossRefPubMedGoogle Scholar
  78. 78.
    Gaemperli O, Kaufmann PA (2008) Hybrid cardiac imaging: more than the sum of its parts? J Nucl Cardiol 15:123–126CrossRefPubMedGoogle Scholar
  79. 79.
    Berman DS, Hachamovitch R, Shaw LJ et al (2006) Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med 47:1107–1118PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • E. Maffei
    • 1
  • C. Martini
    • 1
    • 2
  • S. De Crescenzo
    • 3
  • T. Arcadi
    • 1
  • A. Clemente
    • 1
  • E. Capuano
    • 1
    • 2
  • A. Rossi
    • 2
  • R. Malagò
    • 4
  • N. Mollet
    • 2
  • A. Weustink
    • 2
  • C. Tedeschi
    • 5
  • L. La Grutta
    • 6
  • S. Seitun
    • 7
  • A. Igoren Guaricci
    • 8
  • F. Cademartiri
    • 1
    • 2
  1. 1.Dipartimento di Radiologia e del Cardio-PolmonareAzienda Ospedaliero-Universitaria di ParmaParmaItaly
  2. 2.Dipartimento di Radiologia e CardiologiaErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Dipartimento di Fisica SanitariaOspedale NiguardaMilanoItaly
  4. 4.Dipartimento di Radiologia, Ospedale Borgo RomaUniversità degli StudiVeronaItaly
  5. 5.Dipartimento di Radiologia e CardiologiaOspedale San GennaroNapoliItaly
  6. 6.Dipartimento di RadiologiaUniversità di PalermoPalermoItaly
  7. 7.Dipartimento di RadiologiaAzienda Ospedaliero-Universitaria di GenovaGenovaItaly
  8. 8.Dipartimento di Radiologia e CardiologiaUniversità di FoggiaFoggiaItaly

Personalised recommendations