La radiologia medica

, Volume 115, Issue 1, pp 105–114 | Cite as

Low-dose unenhanced CT protocols according to individual body size for evaluating suspected renal colic: cumulative radiation exposures

  • S. Tartari
  • R. Rizzati
  • R. Righi
  • A. Deledda
  • S. Terrani
  • G. Benea
Uro-Genital Radiology / Radiologia Uro-Genitale



The aim of this study was to assess the radiation dose of dose-reduced unenhanced abdominal multidetector computed tomography (MDCT) scan protocols for suspected renal colic in patients within normal weight range and overweight-obese patients and to record the cumulative dose of repeated examinations.

Materials and methods

Over a 2-year period, we performed 1,026 unenhanced CT examinations for urolithiasis; among these, 675 were performed on 636 patients referred from the emergency department. Patients were divided into two groups on the basis of body mass index (BMI): normal weight (BMI <25 kg/m2 group 1); overweight and obese (BMI >25 kg/m2 group 2). For patients in group 1 and group 2, the protocols of our 64-row scanner prescribe tube current settings at 70 mAs and 150 mAs, respectively. The dose-length product (DLP) estimated by using the manufacturer’s software was converted into effective dose (ED).


Mean DLP and ED were 177 and 345 mGy/cm and 2.4 and 4.8 mSv for group 1 and group 2, respectively. A subset of 25 patients (3.7%) underwent two or more examinations, with estimated ED ranging from 4.8 to 19.2 mSv.


Although radiation dose is nearly double in overweight-obese patients undergoing MDCT, it remains lower than that delivered by a standard-dose protocol. Patients with flank pain, who are often young, are at increased risk for serial CT examinations. Use of a low-dose protocol is mandatory in both normal-weight and obese patients to minimise radiation exposure.


MDCT Low-dose CT Radiation dose Urinary tract 

Protocolli TC diretta a bassa dose in funzione della corporatura del paziente nella valutazione della sospetta colica renale. Esposizione cumulativa da indagini ripetute



Scopo dello studio è misurare la dose efficace della TC addominale diretta con protocolli a bassa dose dedicati per pazienti di corporatura normale e pazienti obesi con sospetta urolitiasi, registrando inoltre l’esposizione derivante da indagini TC ripetute.

Materiali e metodi

Durante un periodo di due anni abbiamo eseguito 1026 indagini TC per urolitiasi; tra queste, 675 TC sono state eseguite in 636 pazienti provenienti dal Pronto Soccorso (PS). Per ogni paziente è stato calcolato l’indice di massa corporea (BMI) dividendo i pazienti in due gruppi: pazienti di taglia normale (BMI<25 kg/m2, gruppo 1) e sovrappeso-obesi (BMI>25 kg/m2, gruppo 2). Per il gruppo 1 ed il gruppo 2 i protocolli del nostro apparecchio TC 64 strati sono stati impostati rispettivamente a 70 mAs e 150 mAs. I valori di DLP forniti dal software dell’apparecchio sono stati convertiti in dose efficace.


La DLP media e la dose efficace media sono risultate di 177 e 345 mGy·cm e 2,4 e 4,8 mSv rispettivamente per il gruppo 1 ed il gruppo 2. Una sottopopolazione di 25 pazienti (3,7%) é stata sottoposta a 2 o più indagini con una dose efficace stimata in un range compreso tra 4,8–19,2 mSv.


La dose efficace media è doppia nel paziente obeso, tuttavia inferiore rispetto a quella somministrata con un protocollo standard. I pazienti con colica renale, spesso giovani, hanno alta probabilità di essere sottoposti a ripetute indagini TC. L’impiego di un protocollo a bassa dose dedicato sia al paziente normale che al paziente obeso è fondamentale per minimizzare l’esposizione.

Parole chiave

TCMD TC a bassa dose Dose Vie urinarie 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith RC, Rosenfield AT, Choe KA et al (1995) Acute flank pain: comparison of non-contrastenhanced CT and intravenous urography. Radiology 194:789–794PubMedGoogle Scholar
  2. 2.
    Dalrymple NC, Verga M, Anderson KR et al (1998) The value of unenhanced helical computerized tomography in the management of acute flank pain. J Urol 159:735–740CrossRefPubMedGoogle Scholar
  3. 3.
    Dalla Palma L, Pozzi-Mucelli R, Stacul F (2001) Present-day imaging of patients with renal colic. Eur Radiol 11:4–17CrossRefPubMedGoogle Scholar
  4. 4.
    Boulay I, Holtz P, Foley WD et al (1999) Ureteral calculi: diagnostic efficacy of helical CT and implications for treatment of patients. AJR Am J Roentgenol 172:1485–1490PubMedGoogle Scholar
  5. 5.
    Fielding JR, Fox LA, Heller H et al (1997) Spiral CT in the evaluation of flank pain: overall accuracy and feature analysis. J Comput Assist Tomogr 21:635–638CrossRefPubMedGoogle Scholar
  6. 6.
    Tamm EP, Silverman PM, Shuman WP (2003) Evaluation of the patient with flank pain and possible ureteral calculus. Radiology 228:319–329CrossRefPubMedGoogle Scholar
  7. 7.
    Ripolles T, Agramunt M, Errando J et al (2004) Suspected ureteral colic: plain film and sonography vs unenhanced helical CT. A prospective study in 66 patients. Eur Radiol 14:129–136CrossRefPubMedGoogle Scholar
  8. 8.
    Katz DS, Scheer M, Lumerman JH et al (2000) Alternative or additional diagnoses on unenhanced helical computed tomography for suspected renal colic: experience with 1000 consecutive examinations. Urology 56:53–57CrossRefPubMedGoogle Scholar
  9. 9.
    Chen MY, Scharling ES, Zagoria RJ et al (2000) CT diagnosis of acute flank pain from urolithiasis. Semin Ultrasound CT MR 21:2–19CrossRefPubMedGoogle Scholar
  10. 10.
    Ather MH, Memon W, Rees J (2005) Clinical impact of incidental diagnosis of disease on non-contrast-enhanced helical CT for acute ureteral colic. Semin Ultrasound CT MR 26:20–23CrossRefPubMedGoogle Scholar
  11. 11.
    Broder J, Bowen J, Lohr J et al (2007) Cumulative CT exposures in emergency department patients evaluated for suspected renal colic. J Emerg Med 33:161–168CrossRefPubMedGoogle Scholar
  12. 12.
    Katz SI, Saluja S, Brink JA, Forman HP (2006) Radiation dose associated with unenhanced CT for suspected renal colic: impact of repetitive studies. AJR Am J Roentgenol 186:1120–1124CrossRefPubMedGoogle Scholar
  13. 13.
    Eikefjord EN, Thorsen F, Rørvik J (2007) Comparison of effective radiation doses in patients undergoing unenhanced MDCT and excretory urography for acute flank pain. AJR Am J Roentgenol 188:934–939CrossRefPubMedGoogle Scholar
  14. 14.
    Pfister S A, Deckart A, Laschke S et al (2003) Unenhanced helical computed tomography vs intravenous urography in patients with acute flank pain: accuracy and economic impact in a randomized prospective trial. Eur Radiol 13:2513–2520CrossRefPubMedGoogle Scholar
  15. 15.
    Thomson JM, Glocer J, Abbott C et al (2001) Computed tomography versus intravenous urography in diagnosis of acute flank pain from urolithiasis: a randomized study comparing costs and radiation dose. Australas Radiol 45:291–297CrossRefPubMedGoogle Scholar
  16. 16.
    Kim BS, Hwang IK, Choi YW et al (2005) Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic: prospective comparative study. Acta Radiol 46:756–763CrossRefPubMedGoogle Scholar
  17. 17.
    Tack D, Sourtzis S, Delpierre I et al (2003) Low-dose unenhanced multidetector CT of patients with suspected renal colic. AJR Am J Roentgenol 180:305–311PubMedGoogle Scholar
  18. 18.
    Hamm M, Knopfle E, Wartenberg S et al (2002) Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 167:1687–1691CrossRefPubMedGoogle Scholar
  19. 19.
    Heneghan JP, McGuire KA, Leder RA et al (2003) Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques. Radiology 229:575–580CrossRefPubMedGoogle Scholar
  20. 20.
    Poletti PA, Platon A, Rutschmann OT et al (2007) Low-dose versus standarddose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933CrossRefPubMedGoogle Scholar
  21. 21.
    Kluner C, Hein PA, Gralla O et al (2006) Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30:44–50CrossRefPubMedGoogle Scholar
  22. 22.
    Katz DS, Venkataramanan N, Napel S, Sommer FG (2003) Can low-dose unenhanced multidetector CT be used for routine evaluation of suspected renal colic? AJR Am J Roentgenol 180:313–315PubMedGoogle Scholar
  23. 23.
    Kalra MK, Maher MM, D’souza RV et al (2005) Detection of urinary tract stones at low-radiation-dose CT with zaxis automatic tube current modulation: phantom and clinical studies. Radiology 235:523–529CrossRefPubMedGoogle Scholar
  24. 24.
    Kalra MK, Maher MM, Rizzo S, Saini S (2004) Radiation exposure and projected risks with multidetector-row computed tomography scanning: clinical strategies and technologic developments for dose reduction. J Comput Assist Tomogr 28(Suppl 1):S46–S49CrossRefPubMedGoogle Scholar
  25. 25.
    Commission of the European Communities (2000) European guidelines on quality criteria for computed tomography. EUR 16262 EN, LuxembourgGoogle Scholar
  26. 26.
    Verdun FR, Gutierrez D, Schnyder P et al (2007) CT dose optimization when changing to CT multi-detector row technology. Curr Probl Diagn Radiol 36:176–184CrossRefPubMedGoogle Scholar
  27. 27.
    Mulkens TH, Daineffe S, De Wijngaert R et al (2007) Urinary stone disease: comparison of standard-dose and low-dose with 4D MDCT tube current modulation. AJR Am J Roentgenol 188:553–562CrossRefPubMedGoogle Scholar
  28. 28.
    Spielmann AL, Heneghan JP, Lee LJ et al (2002) Decreasing the radiation dose for renal stone CT: a feasibility study of single- and multidetector CT. AJR Am J Roentgenol 178:1058–1062PubMedGoogle Scholar
  29. 29.
    De Denaro M, Bregant P, Cupardo F et al (2001) Effective dose in X-ray examinations: comparison between spiral CT and urography in the study of renal colic. Radiol Med 102:256–261PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • S. Tartari
    • 1
  • R. Rizzati
    • 1
  • R. Righi
    • 1
  • A. Deledda
    • 1
  • S. Terrani
    • 2
  • G. Benea
    • 1
  1. 1.Dip. di Diagnostica per Immagini e Radiologia InterventisticaAzienda USL di Ferrara, Ospedale del DeltaLagosanto, FerraraItaly
  2. 2.Clinical Application Specialist CTPhilips HealtcarePhilipsUK

Personalised recommendations