La radiologia medica

, 114:1106 | Cite as

Effect of Tadalafil on prostate haemodynamics: preliminary evaluation with contrast-enhanced US

  • M. Bertolotto
  • E. Trincia
  • R. Zappetti
  • R. Bernich
  • G. Savoca
  • M.A. Cova
Uro-Genital Radiology/Radiologia Uro-Genitale

Abstract

Purpose

Phosphodiesterase-5 (PDE-5) inhibitors have an established role in the treatment of erectile dysfunction, but there is increasing evidence that these drugs are effective also for the treatment of lower urinary tract symptoms and benign prostatic hyperplasia (BPH). The mechanism of action of PDE-5 inhibitors in the prostate, however, is poorly understood. It is conceivable that these drugs act by reducing the smooth muscle tone of the organ, but this effect could produce vascular changes as well. The aim of this study was to investigate whether administration of Tadalafil, a PDE-5 inhibitor, in patients with BPH produces haemodynamic changes in the prostate that can be assessed using contrast-enhanced US (CEUS).

Materials and methods

Twelve consecutive patients with BPH underwent transrectal CEUS before and 90 min after administration of 20 mg Tadalafil. CEUS was performed during bolus injection of SonoVue (4.8 ml) using a nondestructive US mode. The same scan plane, imaging parameters and technique were used before and after Tadalafil administration. Digital clips were recorded and processed using dedicated software (QontraXt v.3.60. Signal intensity (SI) changes in a region of interest (ROI) encompassing the entire prostate were fitted to a gammavariate curve. Changes in enhancement peak, time to peak (TTP), sharpness of the bolus transit and area under the curve (AUC) were considered for further analysis.

Results

After Tadalafil administration, the enhancement peak and AUC increased significantly (p<0.01), reflecting changes in prostate vascularity. TTP and sharpness did not change significantly.

Conclusions

In patients with BPH, vascular changes are observed in the prostate after Tadalafil administration, which can be detected with CEUS.

Keywords

Prostate Phosphodiesterase-5 Contrast enhanced ultrasound Benign prostatic hyperplasia (BPH) Tadalafil 

Effetto del Tadalafil sull’emodinamica prostatica: valutazione preliminare con ecocontrastografia

Riassunto

Obiettivo

Gli inibitori della 5-fosfodiesterasi (PDE-5) hanno un ruolo ben definito nella terapia della disfunzione erettile, ma vi è una crescente evidenza che questi farmaci siano efficaci anche per il trattamento dei disturbi delle basse vie urinarie e dell’iperplasia prostatica benigna (IPB). Il meccanismo d’azione a livello prostatico degli inibitori delle PDE-5 è tuttavia scarsamente compreso. È verosimile che questi farmaci agiscano riducendo il tono della muscolatura liscia dell’organo, ma questo effetto può produrre anche variazioni della vascolarizzazione. Scopo di questo lavoro è valutare se nei pazienti con IPB la somministrazione di Tadalafil, un inibitore delle PDE-5, produce variazioni emodinamiche nella prostata valutabili con ecocontrastografia.

Materiali e metodi

Dodici pazienti consecutivi con IPB sono stati studiati con ecocontrastografia prima e dopo la somministrazione di 20 mg di Tadalafil. L’ecocontrastografia è stata eseguita con un software contrastospecifico non distruttivo dopo somministrazione in bolo di SonoVue (4,8 ml). Prima e dopo la somministrazione di Tadalafil è stata utilizzata la stessa tecnica d’esame, sullo stesso piano di scansione e con gli stessi parametri. Gli esami sono stati registrati in forma digitale e analizzati con un software dedicato (QontraXt v.3.60, AMID, Roma, Italia). Le variazioni dell’intensità di segnale misurate in una regione di interesse (ROI) comprendente tutta la prostata sono state adattate ad una curva gamma-variata. Le variazioni del picco di enhancement, del tempo di picco (TTP), della ripidezza del transito del bolo e dell’area sotto la curva (AUC) sono state valutate statisticamente. Risultati. Dopo la somministrazione di Tadalafil si apprezza un aumento statisticamente significativo del picco di enhancement e dell’AUC, indice di una variazione nella vascolarizzazione della prostata. Non si sono apprezzate variazioni significative del TTP e della ripidezza del transito del bolo.

Conclusioni

Nei pazienti con IPB dopo somministrazione di Tadalafil si osservano variazioni della vascolarizzazione prostatica rilevabili con l’ecocontrastografia.

Parole chiave

Prostata 5-fosfodiesterasi Ecocontrastografia Iperplasia prostatica benigna Tadalafil 

References/Bibliografia

  1. 1.
    Lin CS, Lin G, Xin ZC et al (2006) Expression, distribution and regulation of phosphodiesterase 5. Curr Pharm Des 12: 3439–3457CrossRefPubMedGoogle Scholar
  2. 2.
    Stacey P, Rulten S, Dapling A et al (1998) Molecular cloning and expression of human cGMP-binding cGMP-specific phosphodiesterase (PDE5). Biochem Biophys Res Commun 247: 249–254CrossRefPubMedGoogle Scholar
  3. 3.
    Loughney K, Hill TR, Florio VA et al (1998) Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene 216: 139–147CrossRefPubMedGoogle Scholar
  4. 4.
    Rybalkin SD, Yan C, Bornfeldt KE et al (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93: 280–291CrossRefPubMedGoogle Scholar
  5. 5.
    Truss MC, Uckert S, Stief CG et al (1996) Cyclic nucleotide phosphodiesterase (PDE) isoenzymes in the human detrusor smooth muscle. I. Identification and characterization. Urol Res 24: 123–128CrossRefPubMedGoogle Scholar
  6. 6.
    Uckert S, Kuthe A, Jonas U et al (2001) Characterization and functional relevance of cyclic nucleotide phosphodiesterase isoenzymes of the human prostate. J Urol 166: 2484–2490CrossRefPubMedGoogle Scholar
  7. 7.
    Adolfsson PI, Ahlstrand C, Varenhorst E et al (2002) Lysophosphatidic acid stimulates proliferation of cultured smooth muscle cells from human BPH tissue: sildenafil and papaverin generate inhibition. Prostate 51: 50–58CrossRefPubMedGoogle Scholar
  8. 8.
    Lucas KA, Pitari GM, Kazerounian S et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52: 375–414PubMedGoogle Scholar
  9. 9.
    Corbin JD, Francis SH, Webb DJ (2002) Phosphodiesterase type 5 as a pharmacologic target in erectile dysfunction. Urology 60: 4–11CrossRefPubMedGoogle Scholar
  10. 10.
    Andersson KE, Chapple CR, Hofner K (2002) Future drugs for the treatment of benign prostatic hyperplasia. World J Urol 19: 436–442PubMedGoogle Scholar
  11. 11.
    Sandner P, Hutter J, Tinel H et al (2007) PDE5 inhibitors beyond erectile dysfunction. Int J Impot Res 19: 533–543CrossRefPubMedGoogle Scholar
  12. 12.
    Grimsley SJ, Khan MH, Jones GE (2007) Mechanism of phosphodiesterase 5 inhibitor relief of prostatitis symptoms. Med Hypotheses 69: 25–26CrossRefPubMedGoogle Scholar
  13. 13.
    Andersson KE, Uckert S, Stief C et al (2007) Phosphodiesterases (PDEs) and PDE inhibitors for treatment of LUTS. Neurourol Urodyn 26: 928–933CrossRefPubMedGoogle Scholar
  14. 14.
    McVary KT, Roehrborn CG, Kaminetsky JC et al (2007) Tadalafil relieves lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol 177: 1401–1407CrossRefPubMedGoogle Scholar
  15. 15.
    Tinel H, Stelte-Ludwig B, Hutter J et al (2006) Pre-clinical evidence for the use of phosphodiesterase-5 inhibitors for treating benign prostatic hyperplasia and lower urinary tract symptoms. BJU Int 98: 1259–1263CrossRefPubMedGoogle Scholar
  16. 16.
    Waldkirch ES, Uckert S, Langnase K et al (2007) Immunohistochemical distribution of cyclic GMP-dependent protein kinase-1 in human prostate tissue. Eur Urol 52: 495–501CrossRefPubMedGoogle Scholar
  17. 17.
    Wei K, Jayaweera AR, Firoozan S et al (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97: 473–483PubMedGoogle Scholar
  18. 18.
    Bertolotto M, Pozzato G, Croce LS et al (2006) Blood flow changes in hepatocellular carcinoma after the administration of thalidomide assessed by reperfusion kinetics during microbubble infusion: preliminary results. Invest Radiol 41: 15–21CrossRefPubMedGoogle Scholar
  19. 19.
    Wei K, Le E, Bin JP et al (2001) Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol 37: 1135–1140CrossRefPubMedGoogle Scholar
  20. 20.
    Seidel G, Claassen L, Meyer K et al (2001) Evaluation of blood flow in the cerebral microcirculation: analysis of the refill kinetics during ultrasound contrast agent infusion. Ultrasound Med Biol 27: 1059–1064CrossRefPubMedGoogle Scholar
  21. 21.
    Iordanescu I, Becker C, Zetter B et al (2002) Tumor vascularity: evaluation in a murine model with contrast-enhanced color Doppler US effect of angiogenesis inhibitors. Radiology 222: 460–467CrossRefPubMedGoogle Scholar
  22. 22.
    Siracusano S, Bertolotto M, Cucchi A et al (2006) Application of ultrasound contrast agents for the characterization of female urethral vascularization in healthy pre- and postmenopausal volunteers: preliminary report. Eur Urol 50: 1316–1322CrossRefPubMedGoogle Scholar
  23. 23.
    Rubaltelli L, Corradin S, Dorigo A et al (2007) Automated quantitative evaluation of lymph node perfusion on contrast-enhanced sonography. AJR Am J Roentgenol 188: 977–983CrossRefPubMedGoogle Scholar
  24. 24.
    Mitterberger M, Pinggera GM, Horninger W et al (2007) Comparison of contrast enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on Gleason score. J Urol 178: 464–468CrossRefPubMedGoogle Scholar
  25. 25.
    Mitterberger M, Pelzer A, Colleselli D et al (2007) Contrast-enhanced ultrasound for diagnosis of prostate cancer and kidney lesions. Eur J Radiol 64: 231–238CrossRefPubMedGoogle Scholar
  26. 26.
    Goossen TE, de la Rosette JJ, Hulsbergen-van de Kaa CA et al (2003) The value of dynamic contrast enhanced power Doppler ultrasound imaging in the localization of prostate cancer. Eur Urol 43: 124–131CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • M. Bertolotto
    • 1
  • E. Trincia
    • 1
  • R. Zappetti
    • 1
  • R. Bernich
    • 1
  • G. Savoca
    • 2
  • M.A. Cova
    • 1
  1. 1.UCO di RadiologiaUniversità di Trieste, Ospedale di CattinaraTriesteItaly
  2. 2.UO di UrologiaOspedale Fondazione San Raffaele Giglio, Contrada PietrapollastraCefalùItaly

Personalised recommendations