La radiologia medica

, Volume 113, Issue 6, pp 895–904 | Cite as

Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer

  • E. Pelosi
  • V. Arena
  • A. Skanjeti
  • V. Pirro
  • A. Douroukas
  • A. Pupi
  • M. Mancini
Uro-Genital Radiology Radiologia Uro-Genitale

Abstract

Purpose

The aim of this study was to evaluate the role of whole body 18F-choline (FCH) positron emission tomography—computed tomography (PET-CT) in detecting and localising disease recurrence in patients presenting biochemical relapse after radical treatment for prostate cancer.

Materials and methods

Fifty-six consecutive patients with increased serum prostate-specific antigen (PSA) levels after radical prostatectomy were included in the study. None of them was receiving hormone treatment at the time of the examination or had been treated during the previous 6 months. All patients underwent whole-body 18F-choline PET imaging, and the pathological findings were compared with those of further imaging exams, biopsy and follow-up. On the basis of the PSA levels, we divided our patient population into three subgroups: PSA≤1, 1<PSA≤5, and PSA>5 ng/ml.

Results

Overall, the PET scan detected disease relapse in 42.9% of cases (24/56). PET sensitivity was closely related to serum PSA levels, showing values of 20%, 44% and 81.8% in the PSA≤1, 1<PSA≤5 and PSA>5ng/ml subgroups, respectively.

Conclusions

In patients with biochemical relapse after radical treatment for prostate cancer, 18F-choline PET-CT represents a single step, whole-body, noninvasive study that allows disease detection and localisation. The disease detection rate is related to serum PSA levels.

Keywords

18F-choline PET-CT Prostate cancer Radical prostatectomy Biochemical relapse PSA 

Ruolo dell’esame PET/TC con 18F-colina nell’identificazione di malattia in pazienti sottoposti a trattamento radicale per neoplasia prostatica, con attuale recidiva biochimica

Riassunto

Obiettivo

Lo scopo di questo studio è stato quello di valutare il ruolo dell’esame PET/TC con 18F-colina nella identificazione e localizzazione di recidiva di malattia in pazienti sottoposti a trattamento radicale per neoplasia prostatica, in presenza di attuale recidiva biochimica.

Materiali e metodi

Sono stati inclusi 56 pazienti consecutivi, sottoposti a prostatectomia radicale e con livelli serici di PSA in incremento. Al momento dell’esame, nessuno di loro era in trattamento ormonale né lo era stato nei sei mesi precedenti. Tutti i pazienti sono stati sottoposti ad esame PET/TC total-body con 18F-colina; i reperti patologici sono stati confrontati con ulteriori esami strumentali e/o con la biopsia e/o col follow-up clinico. Sulla base dei livelli serici di PSA, abbiamo suddiviso la nostra popolazione in tre sottogruppi: PSA ≤1, 1<PSA ≤5 e PSA>5 ng/ml.

Risultati

L’esame PET ha identificato la ripresa di malattia nel 42,9% dei casi (24/56). La sensibilità è risultata strettamente correlata ai livelli serici di PSA; infatti essa è stata del 20%, del 44% e dello 81% rispettivamente, nei sottogruppi con PSA ≤1, 1<PSA ≤5 e PSA>5 ng/ml.

Conclusioni

Nei pazienti trattati radicalmente per carcinoma della prostata, in presenza di recidiva biochimica, l’esame PET/TC total-body con 18F-colina rappresenta un’indagine singola e non invasiva, che consente di identificare e localizzare la recidiva di malattia; la sua percentuale di identificazione è correlata con i livelli serici del PSA.

Parole chiave

18F-colina PET/TC Neoplasia prostatica Prostatectomia radicale Recidiva biochimica PSA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    ESMO (2005) Minimum clinical recommendations for diagnosis, treatment and follow-up of prostate cancer. Ann Oncol 16(Suppl 1):i34–i36CrossRefGoogle Scholar
  2. 2.
    Schoder H, Herrmann K, Gonen M et al (2005) 2-[18F]fluoro-2-deoxiglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin Cancer Res 11:4761–4769PubMedCrossRefGoogle Scholar
  3. 3.
    Loblaw D, Mendelson DS, Talcott JA et al (2004) American Society of Clinical Oncology recommendations for the initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer. J Clin Oncol 22:2927–2941PubMedCrossRefGoogle Scholar
  4. 4.
    Partin AW, Pearson JD, Landis PK et al (1994) Evaluation of serum prostate specific antigen velocity after radical prostatectomy to distinguish local recurrence from distant metastases. Urology 43:649–659PubMedCrossRefGoogle Scholar
  5. 5.
    Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nuc Med 42(5 Suppl):1S–93SGoogle Scholar
  6. 6.
    DeGrado TR, Baldwin SW, Wang S et al (2001) Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42:1805–1814PubMedGoogle Scholar
  7. 7.
    Hara T, Kosaka N, Kishi H (2002) Development of 18F-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199PubMedGoogle Scholar
  8. 8.
    Jana S, Blaufox MD (2006) Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 36:51–72PubMedCrossRefGoogle Scholar
  9. 9.
    Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18Fcholine, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt DT, John H, Zweifel R et al (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235:623–628CrossRefGoogle Scholar
  11. 11.
    Kwee SA, Wei H, Sesterhenn I et al (2006) Localization of primary prostate cancer with Dual-Phase 18FFluorocholine PET. J Nucl Med 47:262–269PubMedGoogle Scholar
  12. 12.
    Heinisch M, Dirisamer A, Loidl W et al (2006) Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA<5 ng/ml? Mol Imaging Biol 8:43–48PubMedCrossRefGoogle Scholar
  13. 13.
    Cimitan M, Bortolus R, Morassut S et al (2006) [(18)F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33:1387–1398PubMedCrossRefGoogle Scholar
  14. 14.
    Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61:3599–3603PubMedGoogle Scholar
  15. 15.
    Sella T, Schwartz LH, Swindle PW et al (2004) Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231:379–385PubMedCrossRefGoogle Scholar
  16. 16.
    Pucar D, Shukla-Dave A, Hricak H et al (2005) Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy — initial experience. Radiology 236:545–553PubMedCrossRefGoogle Scholar
  17. 17.
    Wefer AE, Hricak H, Vigneron DB et al (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164:400–404PubMedCrossRefGoogle Scholar
  18. 18.
    Coakley FV, The HS, Qayyum A et al (2004) Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233:441–448PubMedCrossRefGoogle Scholar
  19. 19.
    Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 34:274–292PubMedCrossRefGoogle Scholar
  20. 20.
    Jadvar H, Pinski JK, Conti PS (2003) FDG-PET in suspected recurrent and metastatic prostate cancer. Oncol Rep 10:1485–1488PubMedGoogle Scholar
  21. 21.
    Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196PubMedCrossRefGoogle Scholar
  22. 22.
    Morris MJ, Scher HI (2007) (11)Cacetate PET imaging in prostate cancer. Eur J Nucl Med Mol Imaging 34:181–184PubMedCrossRefGoogle Scholar
  23. 23.
    Sandblom G, Sorensen J, Lundin N et al (2006) Positron emission tomography with C11-Acetate for tumour detection and localization in patients with prostate-specific-antigen relapse after radical prostatectomy. Urology 67:996–1000PubMedCrossRefGoogle Scholar
  24. 24.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMedGoogle Scholar
  25. 25.
    Picchio M, Messa C, Landoni C et al (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]Fluorodeoxyglucose-positron emission tomography. J Urol 169:1337–1340PubMedCrossRefGoogle Scholar
  26. 26.
    De Jong I, Pruim J, Elsinga PH et al (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–38PubMedCrossRefGoogle Scholar
  27. 27.
    Yoshida S, Nakagomi K, Goto S et al (2005) 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 74:214–220PubMedCrossRefGoogle Scholar
  28. 28.
    de Jong I, Pruim J, Elsinga PH et al (2003) Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 44:331–335PubMedGoogle Scholar
  29. 29.
    Yamaguchi T, Lee J, Uemura H et al (2005) Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32:742–748PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • E. Pelosi
    • 1
    • 2
  • V. Arena
    • 1
  • A. Skanjeti
    • 1
  • V. Pirro
    • 2
  • A. Douroukas
    • 1
  • A. Pupi
    • 3
  • M. Mancini
    • 1
  1. 1.PET Center IRMET SpATurinItaly
  2. 2.Nuclear Medicine Unit, S. Giovanni Battista HospitalUniversity of TurinTurinItaly
  3. 3.Nuclear Medicine Unit, Department of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly

Personalised recommendations