La radiologia medica

, Volume 112, Issue 8, pp 1225–1243 | Cite as

Brain perfusion CT: Principles, technique and clinical applications

  • A. CianfoniEmail author
  • C. Colosimo
  • M. Basile
  • M. Wintermark
  • L. Bonomo
Neuroradiology Neuroradiologia


The imaging of brain haemodynamics and its applications are generating growing interest. By providing quantitative measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV), dynamic perfusion computed tomography (p-CT) allows visualisation of cerebral autoregulation mechanisms and represents a fast, available and reliable imaging option for assessing cerebral perfusion. Thanks to its feasibility in emergency settings, p-CT is considered most useful, in combination with CT angiography, in acute ischaemic patients, as it is able to provide a fast and noninvasive assessment of cerebral perfusion impairment. In addition, p-CT can play a diagnostic role in other types of cerebrovascular disease to assess functional reserve, and in intracranial neoplasms, where it has a role in diagnosis, grading, biopsy guidance, and follow-up during treatment. This article illustrates the principles, technique and clinical applications of p-CT cerebral perfusion studies.

Key words

Brain ischemia Brain neoplasms Brain injury Hemodynamics Perfusion CT 

La TC-perfusione dell’encefalo: principi, tecnica, applicazioni cliniche


Lo studio dell’emodinamica cerebrale, ottenuto con le metodiche di imaging, con le sue varie ed attuali applicazioni, genera interesse crescente. La TC perfusione dinamica (p-TC) permette una valutazione quantitativa del flusso cerebrale ematico (CBF) e del volume cerebrale ematico (CBV), offrendo così una visualizzazione diretta dei meccanismi di autoregolazione cerebrale, e si pone come una valida alternativa ad altre modalità di misurazione della perfusione cerebrale, rispetto alle quali ha il maggior vantaggio di essere una tecnica prontamente disponibile ed accessibile, in condizioni di emergenza, nella maggior parte dei centri medici. Per tale ragione la p-TC è utile soprattutto nell’ischemia cerebrale acuta, condizione in cui, associata all’angio-TC, offre in maniera rapida e non-invasiva, la valutazione eziologica dell’ipoperfusione, nonché delle sue ripercussioni emodinamiche e fisiopatologiche sul parenchima cerebrale. Inoltre la p-TC trova utile impiego in pazienti con altre patologie cerebro-vascolari e per la diagnosi, il grading, la guida alle procedure bioptiche, ed il controllo durante la terapia, dei tumori intra-cranici. Questo articolo si propone di riassumere i principi, la tecnica e le principali applicazioni cliniche degli studi di perfusione cerebrale basati sulla metodica TC.

Parole chiave

Ischemia cerebrale Neoplasie cerebrali Trauma cranico Perfusione TC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36:e83–e99PubMedCrossRefGoogle Scholar
  2. 2.
    National Institute of Neurological Disorders and STroke (NINDS) r-TPA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587CrossRefGoogle Scholar
  3. 3.
    Koenig M, Klotz E, Luka B et al (1998) Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 209:85–93PubMedGoogle Scholar
  4. 4.
    Nabavi DG, Cenic A, Craen RA et al (1999) CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 213:141–149PubMedGoogle Scholar
  5. 5.
    Jain R, Hoeffner EG, Deveikis J et al (2004) Carotid perfusion CT with balloon occlusion and acetazolamide challenge test: feasibility. Radiology 231:906–913PubMedCrossRefGoogle Scholar
  6. 6.
    Wintermark M, Ko NU, Smith WS et al (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27:26–34PubMedGoogle Scholar
  7. 7.
    Roberts HC, Roberts TP, Lee TY, Dillon WP (2002) Dynamic contrast-enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow and microvascular permeability-report of two cases. AJNR Am J Neuroradiol 23:828–832PubMedGoogle Scholar
  8. 8.
    Bock JC, Henrikson O, Gotze AH et al (1995). Magnetic resonance perfusion imaging with gadolinium-DTPA. A quantitative approach for the kinetic analysis of first-pass residue curves. Invest Radiol 30:693–699PubMedCrossRefGoogle Scholar
  9. 9.
    Eastwood JD, Lev MH, Provenzale JM (2003) Perfusion CT with iodinated contrast material. AJR Am J Roentgenol 180:3–12PubMedGoogle Scholar
  10. 10.
    Wintermark M, Maeder P, Verdun FR et al (2000) Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol 21:1881–1884PubMedGoogle Scholar
  11. 11.
    Wintermark M, Smith WS, Ko NU et al (2004) Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol 25:720–729PubMedGoogle Scholar
  12. 12.
    Konig M, Kraus M, Theek C et al (2001) Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 32:431–437Google Scholar
  13. 13.
    Mayer TE, Hamann GF, Baranczyk J et al (2000) Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol 21:1441–1449PubMedGoogle Scholar
  14. 14.
    Eastwood JD, Provenzale JM, Hurwitz LM, Lee TY (2001) Practical injection-rate CT perfusion imaging: deconvolution-derived hemodynamics in a case of stroke. Neuroradiology 43:223–226PubMedCrossRefGoogle Scholar
  15. 15.
    Wintermark M, Reichhart M, Thiran JP et al (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51:417–432PubMedCrossRefGoogle Scholar
  16. 16.
    Eastwood JD, Lev MH, Azhari T et al (2002) CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222:227–236PubMedCrossRefGoogle Scholar
  17. 17.
    Wintermark M, Maeder P, Thiran JP et al (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11:1220–1230PubMedCrossRefGoogle Scholar
  18. 18.
    Kudo K, Terae S, Katoh C et al (2003) Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol 24:419–426PubMedGoogle Scholar
  19. 19.
    Koenig M, Klotz E, Luka B et al (1998). Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 209:85–93PubMedGoogle Scholar
  20. 20.
    Furukawa M, Kashiwagi S, Matsunaga N et al (2002) Evaluation of cerebral perfusion parameters measured by perfusion CT in chronic cerebral ischemia: comparison with xenon CT. J Comput Assist Tomogr 26:272–278PubMedCrossRefGoogle Scholar
  21. 21.
    Eastwood JD, Lev MH, Wintermark M et al (2003) Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol. 24:1869–1875PubMedGoogle Scholar
  22. 22.
    Lee T, Lev MH, Eastwood JD et al (2001). Effect of choice of artery in the measurement of cerebral blood flow in stroke by CT perfusion (abstr). Radiology 221(P):481CrossRefGoogle Scholar
  23. 23.
    Van der Schaaf I, Vonken EJ, Waaijer A et al (2006). Influence of partial volume on venous output and arterial input function. AJNR Am J Neruroradiol 27:46–50Google Scholar
  24. 24.
    Hacke W, Kaste M, Fieschi C (1998) Randomised double-blind trial placebocontrolled trial of thrombolytic therapy with intravenous therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 352:1245–1251PubMedCrossRefGoogle Scholar
  25. 25.
    Schellinger PD, Fiebach JB, Mohr A et al (2001) Thrombolytic therapy for ischemic stroke — a review. Part II. Intra-arterial thrombolysis, vertebrobasilar strokes, phase IV trials, and stroke imaging. Crit Care Med 29:1819–1825PubMedCrossRefGoogle Scholar
  26. 26.
    Mayer TE, Schulte-Altedorneburg G, Droste DW, Bruckmann H (2000) Serial CT and MRI of ischaemic cerebral infarcts: frequency and clinical impact of haemorrhagic transformation. Neuroradiology 42:233–239PubMedCrossRefGoogle Scholar
  27. 27.
    Warach S (2001) Tissue viability thresholds in acute stroke — the 4-factor model. Stroke 32:2460–2461PubMedGoogle Scholar
  28. 28.
    Rohl L, Ostergaard L, Simonsen CZ et al (2001) Viability threshold of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32:1140–1146PubMedGoogle Scholar
  29. 29.
    Warach S (2002) Thrombolysis in stroke beyond three hours: targeting patients with diffusion and perfusion MRI. Ann Neurol 51:11–13PubMedCrossRefGoogle Scholar
  30. 30.
    Hacke W, Albers G, Al-Rawi Y et al (2005) The desmoteplase in acute ischemic stroke trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73PubMedCrossRefGoogle Scholar
  31. 31.
    Gonzales RG (2006) Imaging-guided acute ischemic stroke therapy: from “time is brain” to “physiology is brain”. AJNR Am J Neruroradiol 27:728–735Google Scholar
  32. 32.
    Powers WJ, Grubb RL, Darriet D, Raichle ME (1985) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5:600–608PubMedGoogle Scholar
  33. 33.
    Heiss WD, Sobesky J, Hesselmann V (2004) Identifying thresholds for penumbra and irreversible tissue damage. Stroke 35[11 Suppl 1]:2671–2674PubMedCrossRefGoogle Scholar
  34. 34.
    Butcher KS, Parsons M, Mac Gregor L et al (2005) Refining the perfusion-diffusion mismatch hypothesis. Stroke 36:1153–1159PubMedGoogle Scholar
  35. 35.
    Von Kummer R, Allen KL, Holle R et al (1997) Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology 205:327–333Google Scholar
  36. 36.
    Jones TH, Morawetz RB, Crowell RM et al (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782PubMedGoogle Scholar
  37. 37.
    Kaufmann AM, Firlik AD, Fukui MB et al (1999) Ischemic core and penumbra in human stroke. Stroke 30:93–99PubMedGoogle Scholar
  38. 38.
    Hossmann KA (1983) Neuronal survival and revival during and after cerebral ischemia. Am J Emerg Med 1:191–197PubMedCrossRefGoogle Scholar
  39. 39.
    Wintermark M, Reichhart M, Cuisenaire O et al (2002) Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion weighted magnetic resonance imaging in acute stroke patients. Stroke 33:2025–2031PubMedCrossRefGoogle Scholar
  40. 40.
    Schaefer PW, Roccatagliata L, Ledezma C et al (2006) First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intra-arterial therapy. AJNR Am J Neuroradiol 27:20–25PubMedGoogle Scholar
  41. 41.
    Nabavi DG, Cenic A, Henderson S et al (2001) Perfusion mapping using computed tomography allows accurate prediction of cerebral infarction in experimental brain ischemia. Stroke 32:175–183PubMedGoogle Scholar
  42. 42.
    Na DG, Ryoo JW, Lee KH et al (2003) Multiphasic perfusion computed tomography in hyperacute ischemic stroke: comparison with diffusion and perfusion magnetic resonance imaging. J Comput Assist Tomogr 27:194–206PubMedCrossRefGoogle Scholar
  43. 43.
    Wintermark M, Fischbein NJ, Smith WS et al (2005) Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. AJNR Am J Neuroradiol 26:104–112PubMedGoogle Scholar
  44. 44.
    Yamada M, Yoshimura S, Kaku Y et al (2004) Prediction of neurologic deterioration in patients with lacunar infarction in the territory of the lenticulostriate artery using perfusion CT. AJNR Am J Neuroradiol 25:402–408PubMedGoogle Scholar
  45. 45.
    Smith WS, Roberts HC, Chuang NA et al (2003) Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. AJNR Am J Neuroradiol 24:688–690PubMedGoogle Scholar
  46. 46.
    Lee T, Lev MH, Eastwood JD et al (2001) Effect of choice of artery in the measurement of cerebral blood flow in stroke by CT perfusion. Radiology 221:481CrossRefGoogle Scholar
  47. 47.
    Klingebiel R, Busch M, Bohner G et al (2002) Multi-slice CT angiography in the evaluation of patients with acute cerebrovascular diseases — a promising new diagnostic tool. J Neurol 249:43–49PubMedCrossRefGoogle Scholar
  48. 48.
    Eastwood JD, Alexander MJ, Petrella JR Provenzale JM (2002) Dynamic CT perfusion imaging with acetazolamide challenge for the preprocedural evaluation of a patient with symptomatic middle cerebral artery occlusive disease. AJNR Am J Neuroradiol 23:285–287PubMedGoogle Scholar
  49. 49.
    Webster MW, Makaroun MS, Steed DL et al (1995) Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg 21:338–345PubMedCrossRefGoogle Scholar
  50. 50.
    Trojanowska A, Drop A, Jargiello T et al (2006) Changes in cerebral hemodynamics after carotid stenting: evaluation with CT perfusion studies. J Neuroradiol 33:169–174PubMedGoogle Scholar
  51. 51.
    Mayberg MR, Batjer HH, Dacey R et al (1994) Guidelines for the management of aneurismal subarachnoid hemorrhage: special report-a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Circulation 90:2592–2605PubMedGoogle Scholar
  52. 52.
    Clyde BL, Resnick DK, Yonas H et al (1996) The relationship of blood velocity as measured by transcranial Doppler ultrasonography to cerebral blood flow an determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery 38:896–905PubMedCrossRefGoogle Scholar
  53. 53.
    Wintermark M, Chiolero R, Van Melle G et al (2006) Cerebral vascular autoregolation assessed by perfusion-CT in severe head trauma patients. J Neuroradiol 33:27–37PubMedCrossRefGoogle Scholar
  54. 54.
    Wintermark M, Van Melle G, Schnyder P et al (2004) Admission perfusion CT: prognostic value in patients with severe head trauma. Radiology 232:211–220PubMedCrossRefGoogle Scholar
  55. 55.
    Sugahara T, Korogi Y, Kochi M et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486PubMedGoogle Scholar
  56. 56.
    Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrastenhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899PubMedGoogle Scholar
  57. 57.
    Bernsen HJ, van der Kogel AJ (1999) Antiangiogenic therapy in brain tumor models. J Neurooncol 45:247–255PubMedCrossRefGoogle Scholar
  58. 58.
    Mills SJ, Patankar TA, Haroon HA et al (2006) Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? AJNR Am J Neuroradiol 27:853–858PubMedGoogle Scholar
  59. 59.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedGoogle Scholar
  60. 60.
    Eastwood JD, Provenzale JM (2003) Cerebral blood flow, blood volume, and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology 45:373–376PubMedCrossRefGoogle Scholar
  61. 61.
    Cianfoni A, Cha S, Bradley WG et al (2006) Quantitative measurament of blood-brain barrier permeability using perfusion-CT in extra-assial brain tumors. J Neuroradiol 33:164–168PubMedGoogle Scholar
  62. 62.
    Sanelli PC, Eastwood JD, Lee T et al (2001) CT perfusion imaging of acute stroke: variability in quantification of perfusion parameters. Radiology 221:394Google Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • A. Cianfoni
    • 1
    Email author
  • C. Colosimo
    • 1
  • M. Basile
    • 1
  • M. Wintermark
    • 2
  • L. Bonomo
    • 1
  1. 1.Dipartimento di Bio-immagini e Scienze Radiologiche, Sezione di RadiodiagnosticaUniversità Cattolica del Sacro Cuore, Policlinico “A. Gemelli”RomeItaly
  2. 2.Deptartment of Radiology, Neuroradiology SectionUCSF — University of California San FranciscoSan FranciscoUSA

Personalised recommendations