La radiologia medica

, Volume 112, Issue 4, pp 509–525

Evidence based medicine: role of multidetector CT in the follow-up of patients receiving coronary artery bypass graft

  • F. Crusco
  • A. Antoniella
  • V. Papa
  • R. Menzano
  • A. Giovagnoni
Cardiac Radiology Cardioradiologia

Abstract

Purpose

The aim of this study was to define the role of multidetector computed tomography (MDCT) in the follow-up assessment of patients undergoing coronary artery bypass grafting (CABG) using an evidence-based medicine (EBM) approach.

Materials and methods

We performed a literature search of the most reputable studies published in the period 1990–2005 on the clinical follow-up of patients after myocardial revascularisation by CABG. Relevant studies were ranked according to levels of evidence using EBM criteria. A similar search was also conducted on the Internet to identify and review the guidelines posted by the major international scientific societies.

Results

A total of 29 papers meeting the basic reliability requirements of EBM were identified. The reported sensitivity and specificity for electrocardiogram (ECG) testing, stress echocardiography and radionuclide myocardial perfusion imaging were 45% and 82%, 86% and 90%, and 68% and 84%, respectively. All 16 CT studies (one retrospective, the remaining prospective) were validation studies comparing MDCT with conventional coronary angiography. The total number of patients and graft segments studied were 705 and 1,974, respectively. The total number of assessable graft segments were 62%–100%, with a sensitivity and specificity of 75%–100% and 76.9%–100%, respectively.

Conclusions

The applications of MDCT in the follow-up assessment of patients after CABG are derived from indirect evidence only. The efficacy of the method should be evaluated in randomised clinical trials comparing MDCT not only with conventional coronary angiography but also with other noninvasive stress imaging methods. On the basis of the clinical evidence reported in the literature, the indications for the use of MDCT are still limited. In our view, the completion of such randomised trials combined with the development of new-generation scanners is required to correctly define the role of MDCT in the follow-up assessment of patients who have undergone CABG.

Key words

Evidence-based medicine Multidetector CT Follow-up Coronary artery bypass graft 

Medicina basata sulle evidenze: ruolo della TC multidetettore nel follow-up dei pazienti sottoposti a bypass aortocoronarici

Riassunto

Obiettivo

Obiettivo del seguente lavoro è definire, alla luce delle evidenze cliniche in medicina presenti in letteratura (EBM), il ruolo attuale della TC multidetettore (TCMD) come strumento diagnostico di imaging non invasivo nel follow-up dei pazienti sottoposti a rivascolarizzazione mediante bypass aortocoronarici (CABG).

Materiali e metodi

È stata eseguita una ricerca bibliografica riguardo gli studi rilevanti presenti in letteratura inerenti il follow-up clinico-strumentale dei pazienti sottoposti a CABG; gli studi considerati pertinenti, riferiti al periodo 1990–2005, sono stati stratificati in classi di rilevanza secondo livelli di evidenza. Sono stati inoltre revisionati, tramite ricerca mirata dei siti web in internet, le più importanti e recenti linee guida e raccomandazioni adottate dalla comunità scientifica internazionale riguardanti il medesimo argomento.

Risultati

La ricerca bibliografica ha esitato 29 lavori, rispondenti ai requisiti minimi di affidabilità secondo i criteri della EBM. Per ECG da sforzo, ecocardio-stress e scintigrafiastress la letteratura riporta valori di sensibilityà e specificità rispettivamente del 45% e dell’82%, dell’86% e del 90%, del 68% e dell’84%. Gli studi TC selezionati, 15 prospettici, 1 retrospettivo, tutti di validazione mediante comparazione con la coronarografia convenzionale ed eseguiti con metodica multidetettore, hanno complessivamente coinvolto 705 pazienti per un numero totale di 1974 segmenti di CABG esaminati. Da questi si evince che il numero dei segmenti valutabili a fini diagnostici è compreso tra 62% e 100%. La sensibilityà della metodica varia dal 75% al 100%, la specificità dal 76,9% al 100%.

Conclusioni

Le applicazioni della TCMD nel work-up diagnostico dei pazienti post-CABG, sono derivate da prove di tipo indiretto e l’efficacia della metodica, dovrebbe essere valutata nel contesto di studi randomizzati, coinvolgenti anche le altre metodiche di stress imaging non invasivo. Per tali motivi, alla luce dell’evidenza clinica presente in letteratura, le indicazioni all’esecuzione dell’esame sono ancora limitate. A nostro parere, il disegno e la conclusione di studi mirati, unito allo sviluppo di apparecchiature di nuova generazione, permetterà di chiarire il reale ruolo della TCMD nell’algoritmo diagnostico di tali pazienti.

Parole chiave

Medicina basata sulle evidenze TC multidetettore Follow-up Bypass aortocoronarici 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Evidence-based Medicine Working Group (1992) Evidence-based Medicine: a new approach to teaching the practice of medicine. JAMA 268:2420–2425CrossRefGoogle Scholar
  2. 2.
    Pomponio G, Giovagnoni A (2001) La medicina basata sulle evidenze: nuovi strumenti per il radiologo. Centro Scientifico Editore, TorinoGoogle Scholar
  3. 3.
    Gibbons RJ, Balady GJ, Bricker JT et al (2002) ACC/AHA 2002 Guideline Update for Exercise Testing: a report of the American College of Cardiology/American Heart Association Task Force on practice Guidelines (Committee on Exercise Testing). Circulation 106:1883–1892PubMedCrossRefGoogle Scholar
  4. 4.
    Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 42:1318–1333PubMedCrossRefGoogle Scholar
  5. 5.
    Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography: Executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on coronary angiography. Circulation 99:2345–2357PubMedGoogle Scholar
  6. 6.
    Baim DS, Grossman W (2000) Grossman’s Cardiac Catheterization, Angiography, and Intervention, 6th ed. Lippincott William & Wilkins, PhiladelphiaGoogle Scholar
  7. 7.
    Knez A, von Smekal A, Haberl R et al (1996) The value of ultrafast computerized tomography in detection of the patency of coronary bypasses. Z Kardiol 85:629–634PubMedGoogle Scholar
  8. 8.
    Achenbach S, Moshage W, Ropers D et al (1997) Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol 79:856–861PubMedCrossRefGoogle Scholar
  9. 9.
    Enzweiler CN, Kivelitz DE, Wiese TH et al (2000) Coronary artery bypass grafts: improved electron-beam tomography by prolonging breath holds with preoxygenation. Radiology 217:278–283PubMedGoogle Scholar
  10. 10.
    Schlosser T, Konorza T, Hunold P et al (2004) Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol 44:1224–1229PubMedCrossRefGoogle Scholar
  11. 11.
    Martuscelli E, Romagnoli A, D’Eliseo A et al (2004) Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation 110:3234–3238PubMedCrossRefGoogle Scholar
  12. 12.
    Khan MF, Herzog C, Landenberger K et al (2005) Visualisation of non-invasive coronary bypass imaging: 4-row vs. 16-row multidetector computed tomography. Eur Radiol 15:118–126PubMedCrossRefGoogle Scholar
  13. 13.
    Frazier AA, Qureshi F, Read KM et al (2005) Coronary artery bypass grafts: assessment with multidetector CT in the early and late postoperative settings. Radiographics 25:881–896PubMedCrossRefGoogle Scholar
  14. 14.
    Ropers D, Ulzheimer S, Wenkel E et al (2001) Investigation of aortocoronary artery bypass grafts by multislice spiral computed tomography with electrocardiographic-gated image reconstruction. Am J Cardiol 88:792–795PubMedCrossRefGoogle Scholar
  15. 15.
    Nieman K, Pattynama PM, Rensing BJ et al (2003) Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology 229:749–756PubMedCrossRefGoogle Scholar
  16. 16.
    Chiurlia E, Menozzi M, Ratti C et al (2005) Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol 95:1094–1097PubMedCrossRefGoogle Scholar
  17. 17.
    Marano R, Storto ML, Maddestra N, Bonomo L (2004) Non-invasive assessment of coronary artery bypass graft with retrospectively ECG-gated four-row multi-detector spiral computed tomography. Eur Radiol 14:1353–1362PubMedCrossRefGoogle Scholar
  18. 18.
    Dewey M, Lembcke A, Enzweiler C et al (2004) Isotropic half-millimeter angiography of coronary artery bypass grafts with 16-slice computed tomography. Ann Thorac Surg 77:800–804PubMedCrossRefGoogle Scholar
  19. 19.
    Rossi R, Chiurlia E, Ratti C et al (2004) Noninvasive assessment of coronary artery bypass graft patency by multislice computed tomography. Ital Heart J 5:36–41PubMedGoogle Scholar
  20. 20.
    Song MH, Ito T, Watanabe T, Nakamura H (2005) Multidetector computed tomography versus coronary angiogram in evaluation of coronary artery bypass grafts. Ann Thorac Surg 79:585–588PubMedCrossRefGoogle Scholar
  21. 21.
    Salm LP, Bax JJ, Jukema JW et al (2005) Comprehensive assessment of patients after coronary artery bypass grafting by 16-detector-row computed tomography. Am Heart J 150:775–781PubMedCrossRefGoogle Scholar
  22. 22.
    Yoo KJ, Choi D, Choi BW et al (2003) The comparison of the graft patency after coronary artery bypass grafting using coronary angiography and multislice computed tomography. Eur J Cardiothorac Surg 24:86–91PubMedCrossRefGoogle Scholar
  23. 23.
    Anders K, Baum U, Schmid M et al (2006) Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 57:336–444PubMedCrossRefGoogle Scholar
  24. 24.
    Pache G, Saueressig U, Frydrychowicz A et al (2006) Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J 27:976–880PubMedCrossRefGoogle Scholar
  25. 25.
    Burgstahler C, Beck T, Kuettner A et al (2006) Non-invasive evaluation of coronary artery bypass grafts using 16-row multi-slice computed tomography with 188 ms temporal resolution. Int J Cardiol 106:244–249PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamoto M, Kimura F, Niinami H, Suda Y, Ueno E, Takeuchi Y (2006) Noninvasive assessment of off-pump coronary artery bypass surgery by 16-channel multidetector-row computed tomography. Ann Thorac Surg 81:820–827PubMedCrossRefGoogle Scholar
  27. 27.
    Stauder NI, Kuttner A, Schroder S et al (2006) Coronary artery bypass grafts: assessment of graft patency and native coronary artery lesions using 16-slice MDCT. Eur Radiol 16: 2512–2520PubMedCrossRefGoogle Scholar
  28. 28.
    Lakkis, NM, Mahmarian, JJ, Verani, MS et al (1995) Exercise thallium-201 single photon emission computed tomography for evaluation of coronary artery bypass graft patency. Am J Cardiol 76:107–111PubMedCrossRefGoogle Scholar
  29. 29.
    Deluca AJ, Cusack E, Aronow WS, Monsen CE (2004) Sensitivity, specificity, positive predictive value, and negative predictive value of the dipyridamole sestamibi stress test in predicting graft occlusion or > 50% new native coronary artery disease in men versus women and in patients aged > 65 years versus < 65 years who had prior coronary artery bypass grafting. Am J Cardiol 94:625–626PubMedCrossRefGoogle Scholar
  30. 30.
    Kafka H, Leach AJ, Fitzgibbon GM (1995) Exercise echocardiography after coronary artery bypass surgery: correlation with coronary angiography. J Am Coll Cardiol 25:1019–1023PubMedCrossRefGoogle Scholar
  31. 31.
    Crouse LJ, Vacek JL, Beauchamp GD et al (1992) Exercise echocardiography after coronary artery bypass grafting. Am J Cardiol 70:572–576PubMedCrossRefGoogle Scholar
  32. 32.
    Elhendy A, Geleijnse ML, Roelandt JR et al (1996) Assessment of patients after coronary artery bypass grafting by dobutamine stress echocardiography. Am J Cardiol 77:1234–1236PubMedCrossRefGoogle Scholar
  33. 33.
    Chin AS, Goldman LE, Eisenberg MJ (2003) Functional testing after coronary artery bypass graft surgery: a meta-analysis. Can J Cardiol 19:802–808PubMedGoogle Scholar
  34. 34.
    Miller TD, Christian TF, Hodge DO et al (1998) Prognostic value of exercise thallium-201 imaging performed within 2 years of coronary artery bypass graft surgery. J Am Coll Cardiol 31:848–858PubMedCrossRefGoogle Scholar
  35. 35.
    Alazraki NP, Krawczynska EG, Kosinski AS et al (1999) Prognostic value of thallium-201 single-photon emission computed tomography for patients with multivessel coronary artery disease after revascularization (the Emory Angioplasty versus Surgery Trial [EAST]). Am J Cardiol 84:1369–1374PubMedCrossRefGoogle Scholar
  36. 36.
    Palmas W, Bingham S, Diamond GA et al (1995) Incremental prognostic value of exercise thallium-201 myocardial single photon emission computed tomography late after coronary artery bypass surgery. J Am Coll Cardiol 25:403–409PubMedCrossRefGoogle Scholar
  37. 37.
    Khoury AF, Rivera JM, Mahmarian JJ, Verani MS (1997) Adenosine thallium-201 tomography in evaluation of graft patency late after coronary artery bypass graft surgery. J Am Coll Cardiol 29:1290–1295PubMedCrossRefGoogle Scholar
  38. 38.
    Nallamothu N, Johnson JH, Bagheri B et al (1997) Utility of stress single-photon emission computed tomography (SPECT) perfusion imaging in predicting outcome after coronary artery bypass grafting. Am J Cardiol 80:1517–1521PubMedCrossRefGoogle Scholar
  39. 39.
    Zellweger M, Lewin H, Shenghan L et al (2001) When to stress patients after coronary artery bypass surgery? Risk stratification in patients early and late post-CABG using stress myocardial perfusion SPECT: Implications of appropriate clinical strategies. J Am Coll Cardiol 37:144–152PubMedCrossRefGoogle Scholar
  40. 40.
    Lauer MS, Lytle B, Pashkow F et al (1998) Prediction of death and myocardial infarction by screening with exercise-thallium testing after coronary-artery-bypass grafting. Lancet 351:615–622PubMedCrossRefGoogle Scholar
  41. 41.
    Braunwald E, Antman E, Beasley J et al (2002) Guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction-summary article. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). J Am Coll Cardiol 40:1366–1374PubMedCrossRefGoogle Scholar
  42. 42.
    Gruberg L, Hong MK, Mehran R et al (1999) In-hospital and long-term results of stent deployment compared with balloon angioplasty for treatment of narrowing at the saphenous vein graft distal anastomosis site. Am J Cardiol 84:1381–1384PubMedCrossRefGoogle Scholar
  43. 43.
    Herlitz J, Albertsson P, Brandrup-Wognsen G et al (1997) Predictors of hospital readmission two years after coronary artery bypass grafting. Heart 77:437–442PubMedGoogle Scholar
  44. 44.
    Chen L, Therou P, Lesperance J et al (1996) Angiographic features of vein grafts versus ungrafted coronary arteries in patients with unstable angina and previous bypass surgery. J Am Coll Cardiol 28:1493–1499PubMedCrossRefGoogle Scholar
  45. 45.
    Alderman EL, Kip KE, Whitlow PL et al (2004) Native coronary disease progression exceeds failed revascularization as cause of angina after five years in the Bypass Angioplasty Revascularization Investigation. J Am Coll Cardiol 44:766–774PubMedCrossRefGoogle Scholar
  46. 46.
    Loop FD, Lytle BW, Cosgrove DM et al (1986) Influence of the internalmammary-artery graft on 10 year survival and other cardiac events. N Engl J Med 314:1–6PubMedCrossRefGoogle Scholar
  47. 47.
    Cameron A, Davis KB, Green G, Schaff HV (1996) Coronary artery bypass surgery with internal-thoracic-arterygrafts Effects on survival over a 15-year period. N Engl J Med 334:216–219PubMedCrossRefGoogle Scholar
  48. 48.
    Fitzgibbon GM, Kafka HP, Leach AJ et al (1996) Coronary bypass graft fate and patient outcome: Angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 28:616–626PubMedCrossRefGoogle Scholar
  49. 49.
    Goldman S, Zadina, K Moritz T et al (2004) Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol 44:2149–2156PubMedCrossRefGoogle Scholar
  50. 50.
    Silva JA, White CJ, Collins TJ, Ramee SR (1998) Morphologic comparison of atherosclerotic lesions in native coronary arteries and saphenous vein graphs with intracoronary angioscopy in patients with unstable angina. Am Heart J 136:156–163PubMedCrossRefGoogle Scholar
  51. 51.
    Gibbons RJ, Abrams J, Chatterjee K et al (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 107:149–158PubMedCrossRefGoogle Scholar
  52. 52.
    Weintraub WS, Jones EL, Craver JM, Guyton RA (1994) Frequency of repeat coronary bypass or coronary angioplasty after coronary artery bypass surgery using saphenous venous grafts. Am J Cardiol 73:103–112PubMedCrossRefGoogle Scholar
  53. 53.
    Stephan WJ, O’Keefe JH, Piehler JM et al (1996) Coronary angioplasty versus repeat coronary artery bypass grafting for patients with previous bypass surgery. J Am Coll Cardiol 28:1140–1146PubMedCrossRefGoogle Scholar
  54. 54.
    Cole JH, Jones EL, Craver JM et al (2002) Outcomes of repeat revascularization in diabetic patients with prior coronary surgery. J Am Coll Cardiol 40:1968–1975PubMedCrossRefGoogle Scholar
  55. 55.
    Morrison DA, Sethi G, Sacks J et al (2001) Percutaneous coronary intervention versus coronary artery bypass graft surgery for patients with medically refractory myocardial ischemia and risk factors for adverse outcomes with bypass: a multicenter, randomized trial. Investigators of the Department of Veterans Affairs Cooperative Study #385, the Angina With Extremely Serious Operative Mortality Evaluation (AWESOME). J Am Coll Cardiol 38:143–149PubMedCrossRefGoogle Scholar
  56. 56.
    Savage MP, Douglas JS, Fischman DL et al (1997) for the Saphenous Vein De Novo Trial Investigators. Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. N Engl J Med 337:740–747PubMedCrossRefGoogle Scholar
  57. 57.
    Johnson LW, Krone R (1993) Cardiac catheterization 1991: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn 28:219–220PubMedGoogle Scholar
  58. 58.
    Lambert M, Kouz S, Campeau L (1989) Preoperative and operative predictive variables of late clinical events following saphenous vein coronary artery bypass graft surgery. Can J Cardiol 5:87–92PubMedGoogle Scholar
  59. 59.
    Budoff MJ, Cohen MC, Garcia MJ et al (2005) ACCF/AHA clinical competence statement on cardiac imaging with computed tomography and magnetic resonance: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. J Am Coll Cardiol 46:383–402PubMedCrossRefGoogle Scholar
  60. 60.
    Kaiser C, Bremerich J, Haller S et al (2005) Limited diagnostic yield of noninvasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease. Eur Heart J 26:1987–1992PubMedCrossRefGoogle Scholar
  61. 61.
    Cademartiri F, Runza G, Belgrano M et al (2005) Introduction to coronary imaging with 64-slice Computed Tomography. Radiol Med 110:16–41PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  • F. Crusco
    • 1
  • A. Antoniella
    • 2
  • V. Papa
    • 2
  • R. Menzano
    • 2
  • A. Giovagnoni
    • 3
  1. 1.Dipartimento Diagnostica per ImmaginiAUSL 3 UmbriaOspedale Foligno, PerugiaItaly
  2. 2.Dipartimento Diagnostica per ImmaginiAUSL 2 UmbriaOspedale Assisi, PerugiaItaly
  3. 3.Istituto di RadiologiaUniversità Politecnica delle MarcheOspedale Torrette, AnconaItaly

Personalised recommendations