Advertisement

La radiologia medica

, Volume 112, Issue 4, pp 491–508 | Cite as

Patient safety issues in magnetic resonance imaging: state of the art

  • A. Stecco
  • A. Saponaro
  • A. Carriero
Magnetic Resonance Imaging Risonanza Magnetica

Abstract

The presence of a static magnetic field (Bo), a radiofrequency field (RF), a dynamic gradient which varies in time and loud noises during an MR examination could increase patient risk. Specifically, a magnetic field could interfere with ferromagnetic material leading to one of the following five dangerous interactions: 1) projectile effect, 2) twisting, 3) burning, 4) artefacts and 5) device malfunction. The projectile effect is when an object is attracted by the magnet with the risk, as reported in literature, of hitting the patient, operators and/or the instrument. Objects which typically can undergo this effect are oxygen and helium cylinders, IV stands, cleaning trolleys, chairs, lamp holders, scissors, forceps, clampers, traction weights, monitoring instruments, and especially metallic splinters within the patient. Twisting (torsion) typically occurs with cerebral vascular clamps and cochlear implants. If parts of implants are involved a malfunction may result. Burns can be caused when electrically conductive material is introduced within the magnet, for example, ECG electrodes, monitoring cables and coils which are in contact with the patient’s skin, as well as tattoos and eye-liners that contain iron-oxides. Artefacts can be induced by RF emission of implanted devices which can be mistaken for noise of the receiving coil. Implanted devices can induce signal voids which mask or simulate pathologies. Electrical or mechanical malfunction of implanted devices includes pacemakers which can stimulate inappropriately or at an elevated frequency yielding a distorted ECG with altered T-waves. The risk for patients can be reduced by specific educational programs within individual radiology departments which include other specializations and external referring physicians with the aim of developing a standardized safety protocol.

Key words

MR Safety Foreing body Pacemaker Pregnancy 

La safety del paziente in risonanza magnetica: stato dell’arte

Riassunto

La presenza di un campo magnetico statico (Bo) all’interno della sala RM, di un campo di radiofrequenza (RF), di gradienti dinamici variabili nel tempo e di forte rumore durante l’esame comportano il possibile verificarsi di eventi con implicazioni per la sicurezza del paziente. In particolare il campo magnetico può interferire con materiale dotato di caratteristiche ferromagnetiche. Si possono riconoscere 5 tipologie di interazioni pericolose: 1) effetto proiettile, 2) twisting, 3) ustioni, 4) artefatti, 5) malfunzionamento di dispositivi. Effetto proiettile: quando l’attrazione magnetica sposta un oggetto verso il magnete. Questo fenomeno comporta un rischio di impatto con il paziente, con l’operatore o con il magnete stesso. Ci sono descrizioni in letteratura di danno o esiti fatali a carico del paziente. Oggetti che tipicamente possono subire questo effetto sono: bombole di ossigeno, piantane per le fleboclisi, bombole di elio, carrelli delle pulizie, sedie, fissatori di lampadine, forbici e clamper, pesi da trazione, pulsossimetri. Questo effetto può interessare anche schegge metalliche presenti nel corpo. Twisting (torsione): tipicamente le clips vascolari cerebrali e gli impianti cocleari. Vi sono poi oggetti parti di impianti o altri oggetti che possono esserne avulsi, determinando malfunzionamento dell’impianto o danno al paziente. Ustioni: in genere sono causate dall’introduzione di materiale elettrico conduttivo all’interno del magnete come elettrodi ECG, cavi del pulsossimetro, bobine in contatto con la superficie cutanea del paziente, ma anche tatuaggi, eye-liner che contengono ossido di ferro. Artefatti: si possono verificare artefatti dovuti a emissione di RF da parte di dispositivi, che viene considerata rumore dalla bobina di ricezione, oppure vuoto di segnale da componente metallica, che può mascherare o simulare una patologia. Malfunzionamento di dispositivo: tra gli altri, i pacemaker sono di particolare interesse; possono risultare malfunzionanti, stimolando al momento sbagliato oppure con una frequenza troppo elevata. Il tracciato ECG può risultare distorto con alterazioni delle onde T. Tramite un percorso didattico sia all’interno della propria struttura di lavoro, che verso l’esterno come gli altri specialisti, e adottando strategie comportamentali uniformi e codificate è possibile ridurre al minimo gli eventuali rischi per il paziente.

Parole chiave

RM Sicurezza Corpi estranei Pacemaker Gravidanza 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References/Bibliografia

  1. 1.
    Landrigan C (2001) Preventable deaths and injuries during magnetic resonance imaging. N Engl J Med 345:1000–1001CrossRefPubMedGoogle Scholar
  2. 2.
    Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652CrossRefPubMedGoogle Scholar
  3. 3.
    Chaljub G, Kramer LA, Johnson RF 3rd et al (2001) Projectile cylinder accidents resulting from the presence of ferromagnetic nitrous oxide or oxygen tanks in the MR suite. AJR Am J Roentgenol 177:27–30PubMedGoogle Scholar
  4. 4.
    Chen DW (2001) Boy, 6, dies of skull injury during M. R. I. NY Times, Jul 31, Sec. B:1,5Google Scholar
  5. 5.
    Shellock FG, Kanal E (1999) Aneurysm Clips: Effects of Long-term and Multiple Exposures to a 1.5-T MR System. Radiology 210:563–565PubMedGoogle Scholar
  6. 6.
    Evans JC, Smith ET, Nixon TE (2001) A national survey of attitudes towards the use of MRI in patients known to have intracranial aneurysm clips. Brit J Radiol 74:1118–1120PubMedGoogle Scholar
  7. 7.
    Lee Pride G, Kowal J, Mendelsohn DB et al (2000) Safety of MR scanning in patients with nonferromagnetic aneurysm clips. J Magn Reson Imaging 12:198–200CrossRefGoogle Scholar
  8. 8.
    Williamson MR, Espinosa MC, Boutin RD et al (1994) Metallic foreign bodies in the orbits of patients undergoing MR imaging: prevalence and value of radiography and CT before MR. AJR Am J Roentgenol 162:981–983PubMedGoogle Scholar
  9. 9.
    Shuman WP, Haynor DR, Guy AW et al (1988) Superficial-and deep-tissue temperature increases in anesthetized dogs during exposure to high specific absorption rates in a 1.5-T MR imager. Radiology 167:551–554PubMedGoogle Scholar
  10. 10.
    Gieszl R, Williams KD, Drayer BP, Keller PJ (1989) Magnetic resonance imaging and ferromagnetic bullets. Assoc Firearm and Tool Mark Examiners J 21:595–604Google Scholar
  11. 11.
    Teitelbaum GP, Yee CA, Van Horn DD et al (1990) Metallic ballistic fragments: MR imaging safety and artefacts. Radiology 175:855–859PubMedGoogle Scholar
  12. 12.
    Hansen ME (1994) Is it safe to study patients with bullets, pullets, and other metallic shrapnel with MR imaging? AJR Am J Roentgenol 163:739–743PubMedGoogle Scholar
  13. 13.
    Smugar S, Schweitzer ME, Hume E (1999) MRI in patients with intraspinal bullets. J Magn Reson Imaging 9:151–153CrossRefPubMedGoogle Scholar
  14. 14.
    American Society for Testing and Materials (ASTM) Designation (2002) F 2052. Standard test method for measurement of magnetically induced displacement force on passive implants in the magnetic resonance environment. In: Annual Book of ASTM Standards, Section 13, Medical Devices and Services, Volume 13. 01 Medical Devices; Emergency Medical Services. West Conshohocken, PA, pp 1576-1580Google Scholar
  15. 15.
    Shellock FG (2002) Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-Tesla MR system. J Magn Reson Imaging 16:721–732CrossRefPubMedGoogle Scholar
  16. 16.
    Pavlicek W, Geisinger M, Castle L et al (1983) The effects of NMR on patients with cardiac pacemakers. Radiology 147:149–153PubMedGoogle Scholar
  17. 17.
    Mathur-De Vre R (1987) Safety aspects of magnetic resonance imaging and magnetic resonance spectroscopy applications in medicine and biology: I. Biomagnetic effects. Arch Belg 45:394–424PubMedGoogle Scholar
  18. 18.
    Duru F, Luechinger R, Scheidegger MB et al (2001) Pacing in magnetic resonance imaging environment: clinical and technical considerations on compatibility. Eur Heart J 22:113–124CrossRefPubMedGoogle Scholar
  19. 19.
    Shellock FG, Kanal E (1996) Magnetic resonance: bioeffects, safety and patient management, 2nd ed. Lippincott-Raven, Philadelphia, pp xxx–xxxGoogle Scholar
  20. 20.
    Buchli R, Boesiger P, Meier D (1988) Heating effects of metallic implants by MRI examinations. Magn Res Med 7:255–261CrossRefGoogle Scholar
  21. 21.
    Lauck G, von Smekal A, Jung W et al (1993) Influence of nuclear magnetic resonance imaging on software-controlled cardiac pacemakers (abstr). Pacing Clin Electrophysiol 16:1140Google Scholar
  22. 22.
    Avery JE (1988) Loss prevention case of the month: not my responsibility! J Tenn Med Assoc 81:523PubMedGoogle Scholar
  23. 23.
    Martin ET, Coman JA, Shellock FG et al (2004) Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 43:1315–1324CrossRefPubMedGoogle Scholar
  24. 24.
    Sommer T, Lauck G, Schimpf R et al (1998) MRI in patients with cardiac pacemakers: in vitro and in vivo evaluation at 0.5 Tesla. Rofo. 168:36–43PubMedGoogle Scholar
  25. 25.
    Martin ET, Coman JA, Shellock FG et al (2004) Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 43:1315–1324CrossRefPubMedGoogle Scholar
  26. 26.
    Hartnell GG, Spence L, Hughes LA et al (1997) Safety of MR imaging in patients who have retained metallic materials after cardiac surgery. AJR Am J Roentgenol 168:1157–1159PubMedGoogle Scholar
  27. 27.
    Shellock FG, O’Neil M, Ivans V et al (1999) Cardiac pacemakers and implantable cardioverterdefibrillators are unaffected by operation of an extremity MR imaging system. AJR Am J Roentgenol 172:165–170PubMedGoogle Scholar
  28. 28.
    Loewy J, Loewy A, Kendall EJ (2004) Reconsideration of pacemakers and MR imaging. RadioGraphics 24:1257–1268CrossRefPubMedGoogle Scholar
  29. 29.
    Roguin A, Zviman MM, Meininger GR et al (2004) Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 T. Circulation 110:475–482CrossRefPubMedGoogle Scholar
  30. 30.
    Shellock FG (2004) Reference manual for magnetic resonance safety, implants, and devices: 2004 edition. Biomedical Research Publishing Group, Los AngelesGoogle Scholar
  31. 31.
    Carr JJ (1995) Danger in performing MR imaging on women who have tattooed eyeliner or similar types of permanent cosmetic injections. AJR Am J Roentgenol 165:1546–1547PubMedGoogle Scholar
  32. 32.
    Kreidstein ML, Giguere D, Freiberg A (1997) MRI interaction with tattoo pigments: case report, pathophysiology, and management. Plast Reconstr Surg 99:1717–1720CrossRefPubMedGoogle Scholar
  33. 33.
    Vahlensieck M (2000) Tattoo-related cutaneous inflammation (burn grade I) in a mid-field MR scanner. [Letter] Eur Radiol 10:97Google Scholar
  34. 34.
    Whitney D,. Shellock FG (2002) Magnetic resonance imaging and permanent cosmetics (tattoos): survey of complications and adverse events. J Magn Reson Imaging 15:180–184CrossRefGoogle Scholar
  35. 35.
    Hess T, Stepanow B, Knopp MV (1996) Safety of intrauterine contraceptive device during MR imaging. Eur Radiol 6:66–68CrossRefPubMedGoogle Scholar
  36. 36.
    Mark AS, Hricak H (1987) Intrauterine contraceptive devices: MR imaging. Radiology 162:311–314PubMedGoogle Scholar
  37. 37.
    Shellock FG (2001) New metallic implant used for permanent contraception in women: evaluation of MR safety. Am J Radiol 178:1513–1516Google Scholar
  38. 38.
    Shellock FG (2001) Magnetic resonance: health effects and safety. CRC, Boca RatonGoogle Scholar
  39. 39.
    Shellock FG (2001) Pocket guide to metallic implants and MR procedures: update 2001. Lippincott-Raven Healthcare, New YorkGoogle Scholar
  40. 40.
    Shellock FG (2001) Reference manual for magnetic resonance safety. Amirsys, Salt Lake CityGoogle Scholar
  41. 41.
    Girard N (2002) Fetal MR Imaging. Eur J Radiol 12:1869–1871Google Scholar
  42. 42.
    Breysem L, Bosmans H, Dymarkowski S et al (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur J Radiol 13:1538–1548CrossRefGoogle Scholar
  43. 43.
    Chong BW, Babcock CJ, Pang D, Ellis WG (1997) A magnetic resonance template for the normal cerebellar development in the human fetus. Neurosurgery 41:924–929CrossRefPubMedGoogle Scholar
  44. 44.
    Chung HW, Chen CY, Zimmerman RA et al (2000) T2 weighted fast MR imaging with True FISP versus HASTE: comparative efficacy in the evaluation of normal fetal brain function. Am J Radiol 175:1375–1380Google Scholar
  45. 45.
    Garel C, Chantrel E, Brisse H et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prematal MR imaging. AJNR Am J Neuroradiol 22:184–189PubMedGoogle Scholar
  46. 46.
    Huisman TAGM, Kubik-Huch RA, Marineck B (2002) Fetal magnetic resonance imaging: technical considerations and normal brain development. Eur J Radiol 12:1941–1951Google Scholar
  47. 47.
    Huisman TAGM, Wisser J, Martin E et al (2002) Fetal magnetic resonance imaging of the central nervous system. Eur J Radiol 12:1952–1961Google Scholar
  48. 48.
    Blaicher W, Prayer D, Bernasheck G (2003) Magnetic resonance imaging and ultrasound in the assessment of the central nervous system. J Perinat Med 31:459–468CrossRefPubMedGoogle Scholar
  49. 49.
    Resta M, Medicamento N (1998) Magnetic resonance imaging of the normal and pathologic fetal brain. Childs Nervous System 14:151–154CrossRefGoogle Scholar
  50. 50.
    D’Ercole C, Girare N, Cravello L et al (1998) Prenatal diagnosis of fetal corpus callosum agenesis by ultrasonography and magnetic resonance imaging. Prenatal Diag 18:247–253CrossRefPubMedGoogle Scholar
  51. 51.
    Levine D, Barnes PD, Madsen JR et al (1999) Central nervous system abnormalities assessed with prenatal magnetic resonance imaging. Obstet Gynecol 94:1011–1019CrossRefPubMedGoogle Scholar
  52. 52.
    De Laveaucoupet J, Audibert F, Guis F et al (2001) Fetal magnetic resonance imaging of ischemic brain injury. Prenatal Diag 21:729–736CrossRefPubMedGoogle Scholar
  53. 53.
    Turgut F, Turgut M, Onur E, Baskaja V (2001) In utero MR imaging and management of foetal hydrocephalus and NTDs in the third trimester. J Neurosurgical Sci 45:189–192Google Scholar
  54. 54.
    Denis D, Maugey-Laulom B, Carles D et al (2001) Prenatal diagnosis of schizencephaly by fetal magnetic resonance imaging. Fetal Diag Therapy 16:354–359CrossRefGoogle Scholar
  55. 55.
    Whitby E, Paley MN, Davies N et al (2001) Ultrafast magnetic resonance imaging of central nervous system abnormalities in utero in the second and third trimester of pregnancy: a comparison with ultrasound. Br J Obstet Gynecol 108:519–526CrossRefGoogle Scholar
  56. 56.
    Keller TM, Rake A, Michel SCA et al (2004) MR assessment of fetal lung development using lung volumes and signal intensities. Eur J Radiol 14:984–989CrossRefGoogle Scholar
  57. 57.
    Duncan KR, Baker P, Gowland PA et al (1997) Demonstration of changes in fetal liver erithropoiesis using echoplanar magnetic resonance imaging. Am J Physiol 273:G965–G967PubMedGoogle Scholar
  58. 58.
    Kathary N, Bulas DI, Newman KD, Schoberg RL (2001) MRI imaging of fetal neck masses with airway compromise: utility in delivery planning. Pediatr Radiol 31:727–731CrossRefPubMedGoogle Scholar
  59. 59.
    Cassart M, Massez A, Metens T et al (2004) Complementary role of MRI after sonography in assessing bilateral urinary tract anomalies in the fetus. Am J Radiol 182:689–695Google Scholar
  60. 60.
    Ong SS, Moore RJ, Warren AJ et al (2003) Myometrial and placental artery reactivity alone cannot explain reduced placental perfusion in pre-eclampsia and intrauterine growth restriction. Br J Obstet Gynecol 110:909–915Google Scholar
  61. 61.
    Trop I, Levine D (2001) Hemorrhage during pregnancy: sonography and MR imaging. Am J Radiol 176:607–615Google Scholar
  62. 62.
    Baker PN, Johnson IR, Boulby P, Gowland PA (1997) Measurement of amniotic fluid volumes using echoplanar imaging. J Obstet Gynecol 17:268–269Google Scholar
  63. 63.
    Zeeman GG, Hatab M, Twickler DM (2003) Maternal cerebral blood flow changes in pregnancy. Am J Obstet Gynecol 189:968–972CrossRefPubMedGoogle Scholar
  64. 64.
    Zeeman GG, Fleckenstein JL, Twickler DM, Cunningham FG (2004) Cerebral infarction in eclampsia. Am J Obstet Gynecol 189:714–720CrossRefGoogle Scholar
  65. 65.
    Heinrichs WL, Fong P, Flannery M et al (1988) Midgestional exposure of pregnant Balb/C mice to magnetic resonance imaging conditions. Magn Reson Imaging 6:305–313CrossRefPubMedGoogle Scholar
  66. 66.
    Beher KP, Tiffe HW, Hinz KH et al (1991) Nuclear magnetic resonance and the development of chicken embryos. Dtsche Tierarztl Wochenschr 98:149–152Google Scholar
  67. 67.
    Yip YP, Capriotti C, Talagala SL, Yip JW (1994) Effects of MR exposure at 1,5 T on early embryonic development of the chick J. Magn Reson Imaging 4:742–748CrossRefGoogle Scholar
  68. 68.
    Magin RL, Lee JK, Klintsova A et al (2000) Biological effects of long duration, high field (4T) MRI on growth and development in mouse. J Magn Reson Imaging 12:140–149CrossRefPubMedGoogle Scholar
  69. 69.
    Baker PN, Johnson IR, Harvey P et al (1994) A three years follow up of children imaged in utero with echoplanar magnetic resonance imaging. Am J Obstet Gynecol 170:32–33PubMedGoogle Scholar
  70. 70.
    Myers C, Duncan KR, Gowland PA et al (1998) Failure to detect intrauterine growth restriction following in utero exposure to MRI. Br J Radiol 71:549–551PubMedGoogle Scholar
  71. 71.
    Edwards MJ, Saunders RD, Shiota K (2003) Effects of heats on embryos and foetuses. Int J Hyperthermia 19:295–324CrossRefPubMedGoogle Scholar
  72. 72.
    Etzel RA, Balk SJ, Bearer CF et al (1997) Noise: a hazard for the fetus and newborn. Pediatrics 100:724–727CrossRefGoogle Scholar
  73. 73.
    Price D, De Wilde JP, Papadaki AM et al (2001) A survey of acoustic noise levels frome 1,5 MRI scanners. J Magn Reson Imaging 13:288–293CrossRefPubMedGoogle Scholar
  74. 74.
    Glover P, Hykin J, Gowland P et al (1995) An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol 68:1090–1094PubMedCrossRefGoogle Scholar
  75. 75.
    Webb JAW, Thomsen HS, Morcos SM (2005) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 15:1234–1240CrossRefPubMedGoogle Scholar
  76. 76.
    Rofsky NM, Pizzarello DJ, Weinreb JC et al (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentate dimeglumine. J Magn Reson Imaging 4:805–807CrossRefPubMedGoogle Scholar
  77. 77.
    Soltys RA (1992) Summary of preclinical safety evaluation of gadoteridol injection. Invest Radiol 27(suppl 1):S7–S11PubMedGoogle Scholar
  78. 78.
    Kanal E, Borgstede JP, Barkovich AJ et al (2004) American College of Radiology White Paper on MR Safety: 2004 update and revisions. AJR Am J Roentgenol 182:1111–1114PubMedGoogle Scholar
  79. 79.
    Morsetti A, Bussi S, Tirone P, de Haen C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0,5 M solution for injection (Multihance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(suppl 1):S207–S217Google Scholar
  80. 80.
    Hylton M (2000) Suspension of breastfeeding following gadopentetate dimeglumine administration. Radiology 216:325–326PubMedGoogle Scholar
  81. 81.
    Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T et al (2000) Excretion of gadopentetate dimeglumine into human breast milk during lactation. Radiology 216:555–558PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2007

Authors and Affiliations

  1. 1.SCDU RadiologiaUniversità del Piemonte Orientale “A. Avogadro”, ASO Maggiore della CaritàNovaraItaly

Personalised recommendations