Biotechnological Methods of Management and Utilization of Potato Industry Waste—a Review

  • 49 Accesses


Protection of the environment is one of the most important issues of politics in many countries. The food industry generates large amounts of waste, which can be further managed using biotechnological processes. The potato industry is one of the branches which generates a huge amount of waste that is burdensome for the environment. In the production process of potato starch, chips and alcohol, the following wastes are formed: potato wastewater, potato pulp, peel, distillery wastewater and pulp. These wastes can then be managed as components of microbial media in the biotechnological production of cellular biomass of yeasts, microbial polysaccharides, protein and lipids, carotenoids, enzymes and organic acids. On the one hand, this allows for the reduction of costs of production of food components through microbial synthesis, and on the other, it enables the environmental management of industrial waste. The present article discusses the most important studies concerning the biotechnological management of wastes of the potato industry.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. Akbar SM, Abbaspour-Fard MH, Aghel H, Aghkhani MH (2014) Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system. Appl Biochem Biotechnol 173:1858–1869.

  2. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902.

  3. Askari S, Siddiqui A, Kaleem M (2017) Potato peel mediated improvement in organic substances of vigna mungo growing under copper stress. J Pharmacogn Phytochem 6:1373–1378

  4. Bai ZH, Zhang HX, Qi XY, Peng XW, Li BJ (2004) Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresour Technol 95:49–52.

  5. Bakshi MPS, Wadhwa M, Makkar HP (2016) Waste to worth: vegetable wastes as animal feed. CAB Rev 11(012):1–26.

  6. Baranowska A, Zarzecka K (2017) Costs of cultivation of edible potatoes of Vineta variety. Annals PAAAE 19(6):25–30.

  7. Bergthaller W, Witt W, Goldau HP (1999) Potato starch technology. Starch-Stärke 51:235–242

  8. Bzducha–Wróbel A, Błażejak S, Molenda M, Reczek L (2015) Biosynthesis of β(1,3)/(1,6)-glucans of cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol. Eur Food Res Technol 240:1023–1034.

  9. Cabrera LC, Talamini E, Dewes H (2019) Potato breeding by many hands? Measuring the germplasm exchange based on a cultivated potatoes database. Int J Food Syst Dyn 10(1):114–129

  10. Chintagunta AD, Jacob S, Banerjee R (2016) Integrated bioethanol and biomanure production from potato waste. Waste Manag 49:320–325.

  11. Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, Kana EG (2020) Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renew Energy 146:1031–1040.

  12. Czupryński B, Kłosowski G, Kotarska K, Sadowska J (2000) Studies on utilization of potato slops in the production of rigid polyurethane-polyisocyanurate foams. Polimery 45:439–441.

  13. Dishisha T, Stahl A, Lundmark S, Hatti-Kaul R (2013) An economical biorefinery process for propionic acid production from glycerol and potato juice using cell density fermentation. Bioresour Technol 135:504–512.

  14. Dzwonkowski W (2017) Ewolucja produkcji ziemniaków w Polsce i UE. Problems of World Agriculture/Problemy Rolnictwa Światowego 17(3):71-80.

  15. Ergun SO, Urek RO (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci 15:273–277.

  16. Ganner A, Stoiber C, Wieder D, Schtzmayr G (2010) Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. J Microbiol Methods 83:168–174.

  17. Gientka I, Kieliszek M, Jermacz K, Błażejak S (2017) Identification and characterization of oleaginous yeast isolated from kefir and its ability to accumulate intracellular fats in deproteinated potato wastewater with different carbon sources. BioMed Res Int 2017:6061042–6061019.

  18. Grommers HE, Krogt DA (2009) Potato starch: production, modifications and uses. In: BeMiller J, Whistler R (eds) Starch: chemistry and technology. Elsevier Inc, Amsterdam, pp 511–539.<235::AID-STAR235>3.0.CO;2-7

  19. Gu L, Bai Z, Jin B, Zhang J, Li W, Zhuang G, Zhang X (2010) Production of a newly isolated Paenibacillus polymyxabiocontrol agent using monosodium glutamate wastewater and potato wastewater. J Environ Sci 22:1407–1412.

  20. Guo I, Lin KC (1990) Anaerobic treatment of potato-processing wastewater by a UASB system at low organic loadings. Water Air Soil Pollut 53:367–377.

  21. Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R (2018) Industrial potato peel as a feedstock for biobutanol production. New Biotechnol 46:54–60.

  22. Huang LP, Jin B, Lant P, Zhou J (2003) Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J Chem Technol Biotechnol 78(8):899–906.

  23. Izmirlioglu G, Demirci A (2012) Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl Sci 2:738–753.

  24. Izmirlioglu G, Demirci A (2016) Improved simultaneous saccharification and fermentation of bioethanol from industrial potato waste with co-cultures of Aspergillus niger and Saccharomyces cerevisiae by medium optimization. Fuel 185:684–691.

  25. Izmirlioglu G, Demirci A (2017) Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus niger and Saccharomyces cerevisiae in biofilm reactor. Fuel 202:260–270.

  26. Jin B, Huang LP, Lant P (2003) Rhizopus arrhizus-a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnol Lett 25:1983–1987.

  27. Kosiek E (1993) Próby wykorzystania soku ziemniaczanego w produkcji drożdży piekarskich. Zesz Nauk PŁ Chem Spoż Biotechnol 648:31–41

  28. Kot AM, Błażejak S, Kurcz A, Bryś J, Gientka I, Bzducha-Wróbel A, Maliszewska M, Reczek L (2017) Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electron J Biotechnol 27:25–31.

  29. Kowalczewski P, Celka K, Białas W, Lewandowicz G (2012) Antioxidant activity of potato juice. Acta Sci Pol Technol Aliment 11:175–181

  30. Kozich M, Jetzinger F, Mann KJ (2009) Kartoffelstärke - wandlungsfähiges Naturprodukt. Kartoffelbau 60:433–437

  31. Krzywonos M, Cibis E, Miśkiewicz T, Ryznar-Luty A (2009) Utilization and biodegradation of starch stillage (distillery wastewater). Electron J Biotechnol 12:1.

  32. Kurcz A, Błażejak S, Kot AM, Bzducha-Wróbel A (2016) Wykorzystanie odpadów pochodzących z przemysłu rolno-spożywczego do produkcji biomasy drożdży paszowych Candida utilis. Postep Mikrobiol 55(1):19–26

  33. Kurcz A, Błażejak S, Kot AM, Bzducha-Wróbel A, Kieliszek M (2018) Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis. Waste Biomass Valori 9(1):57–64.

  34. Kurnik K, Treder K, Skorupa-Kłaput M, Tretyn A, Tyburski J (2015) Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut 226(8):254.

  35. Kurnik K, Krzyżyński M, Treder K, Tretyn A, Tyburski J (2018) Study on utilizing solid food industry waste with brewers’ spent grain and potato pulp as possible peroxidase sources. J Food Biochem 42(1):e12446.

  36. Laroche C, Michaud P (2007) New development and prospective applications for β(1,3)-glucans. Recent Pat Biotechnol 1:59–73.

  37. Lasik M, Nowak J, Krzywonos M, Cibis E (2010) Impact of batch, repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater. Bioresour Technol 101:3444–3451.

  38. Liang S, McDonald AG (2015) Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste Manag 46:197–200.

  39. Liang S, McDonald AG, Coats ER (2014) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manag 45:51–56.

  40. Mabrouk MEM, El Ahwany AM (2008) Production of β-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels. Afr J Biotechnol 7:1123–1128.

  41. Malladi B, Ingham SC (1993) Thermophilic aerobic treatment of potato-processing wastewater. World J Microbiol Biotechnol 9:45–49.

  42. Markiewicz M, Przewodowska A, Przewodowski W, Stochła W (2015) Wykorzystanie chromatografii membranowej do odzyskiwania białek aktywnych biologicznie z odpadów przemysłu skrobiowego. Rocz Ochr Sr 17:1699–1714

  43. Mayer F (1998) Potato pulp: properties, physical modification and applications. Polym Degrad Stab 59(1–3):231–235.

  44. Mayer F, Hillebrandt JO (1997) Potato pulp: microbiological characterization, physical modification, and application of this agricultural waste product. Appl Microbiol Biotechnol 48(4):435–440.

  45. Miedzianka J, Pęksa A, Smolarczyk E (2010) Zastosowanie przemysłowego soku ziemniaczanego do otrzymywania preparatów białka arylowanego. Zesz Probl Post Nauk Roln 557:261–273

  46. Miedzianka J, Pęksa A, Pokora M, Rytel E, Tajner-Czopek A, Kita A (2014) Improving the properties of fodder potato protein concentrate by enzymatic hydrolysis. Food Chem 159:512–518.

  47. Mishra BK, Arora A, Lata R (2004) Optimization of a biological process for treating potato chips industry wastewater using a mixed culture of Aspergillus foetidus and Aspergillus niger. Bioresour Technol 94:9–12.

  48. Mladenović D, Pejin J, Kocić-Tanackov S, Stefanović A, Djukić-Vuković A, Mojović L (2016) Potato stillage and sugar beet molasses as a substrate for production of lactic acid and probiotic biomass. J. Process Energy Agric 20:17–20

  49. Mukherjee R, Paul T, Soren JP, Halder SK, Keshab CKC, Pati BR, Mohapatra PK (2017) Acidophilic α-amylase production from Aspergillus niger RBP7 using potato peel as substrate: a waste to value added approach. Waste Biomass Valor 10(4):851–863.

  50. Muniraj IK, Xiao L, Liu H, Zhan X (2015) Utilisation of potato processing wastewater for microbial lipids and γ-linolenic acid production by oleaginous fungi. J Sci Food Agric 95(15):3084–3090.

  51. Murthy PS, Kusumoto KI (2015) Acid protease production by Aspergillus oryzae on potato pulp powder with emphasis on glycine releasing activity: a benefit to the food industry. Food Bioprod Process 96:180–188.

  52. Nadiha MN, Fazilah A, Bhat R, Karim AA (2010) Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chem 121(4):1053–1059.

  53. Nawaz MA, Bibi Z, Karim A, Rehman HU, Jamal M, Jan T, Aman A, Qader SAU (2016) Production of α-1,4-glucosidase from Bacillus licheniformis KIBGE-IB4 by utilizing sweet potato peel. Environ Sci Pollut Res Int 24(4):4058–4066.

  54. Ncobela CN, Kanengoni AT, Hlatini VA, Thomas RS, Chimonyo M (2017) A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim Feed Sci Technol 227:107–117.

  55. Novak M, Synytsya A, Gedeon O, Slepicka P, Prochazka V, Synytsya A, Blahovec J, Hejlova A, Čopikova J (2012) Yeast β(1,3),(1,6)-d-glucan films: preparation and characterization of some structural and physical properties. Carbohydr Polym 87:2496–2504.

  56. Nowak J, Lasik M (2009) Wysokotemperaturowa bioremediacja ścieków z przemysłu ziemniaczanego z wykorzystaniem mieszanej kultury bakteryjnej. Nauka Przyr Technol 3(4):145

  57. Nowak J, Górna B, Nowak W (2013) Wykorzystanie grzybów strzępkowych do biodegradacji ścieków z przemysłu ziemniaczanego z jednoczesną produkcją biomasy pleśniowej na cele paszowe. Zywn-Nauk Technol Ja 6:191–203

  58. Oda Y, Saito K, Yamauch H, Mori M (2002) Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr Microbiol 45:1–4.

  59. Pathak PD, Mandavgane SA, Puranik NM, Jambhulkar SJ, Kulkarni BD (2018) Valorization of potato peel: a biorefinery approach. Crit Rev Biotechnol 38(2):218–230.

  60. Pereira CR, Resende JTV, Guerra EP, Lima VA, Martins MD, Knob A (2017) Enzymatic conversion of sweet potato granular starch into fermentable sugars: feasibility of sweet potato peel as alternative substrate for α-amylase production. Biocatal Agric Biotechnol 11:231–238.

  61. Rubio MC, Molina OE (1989) Treatment of potato waste effluents with bacterial protein production. Biol Wastes 29:221–228.

  62. Santos TC, Gomes DPP, Bonomo RCF, Franco M (2012) Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133:1299–1304.

  63. Schalchli H, Hormazabal E, Rubilar O, Briceno G, Mutis A, Zocolo GJ, Diez MC (2017) Production of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi using potato solid wastes as the sole nutrient source. J Appl Microbiol 123:886–895.

  64. Shukla J, Kar R (2006) Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates. World J Microbiol Biotechnol 22:417–422.

  65. Singh PK, Deshbhratar PB, Ramteke DS (2012) Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric Water Manag 103:100–104.

  66. Souza Filho P, Brancoli P, Bolton K, Zamani A, Taherzadeh M (2017) Techno-economic and life cycle assessment of wastewater management from potato starch production: present status and alternative biotreatments. Fermentation 3(4):56.

  67. Szarek D, Przewodowska A (2016) Fizykochemiczne metody odzyskiwania białek z soku ziemniak. ZP 4:51–55

  68. Taher IB, Bennour H, Fickers P, Hassouna M (2017) Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste Biomass Valor 8:183–192.

  69. Tian Y, Mei X, Liang Q, Wu D, Ren N, Xing D (2017) Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells. RSC Adv 7:8376–8380.

  70. Wambeke MV, Grusenmeyer S, Versrtraete W, Longry R (1990) Sludge bed growth in an UASB reactor treating potato processing wastewater. Process Biochem Int 25:181–186.

  71. Winnicki T, Bogucka B (2017) Evaluation of different potato fertilization regimes on starch yield–production and economic aspects. Pol J Nat Sci 32(4):637–648

  72. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World J Microbiol Biotechnol 23:229–236.

  73. Zhang W, Zhang Y, Liu Z (2012) Effect of different absorbents on fermentation quality of wet potato pulp. J Anim Vet Adv 11(22):4230–4235

Download references

Author information

Correspondence to Anna M. Kot or Marek Kieliszek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kot, A.M., Pobiega, K., Piwowarek, K. et al. Biotechnological Methods of Management and Utilization of Potato Industry Waste—a Review. Potato Res. (2020) doi:10.1007/s11540-019-09449-6

Download citation


  • Microbial biosynthesis
  • Potato peel
  • Potato pulp
  • Potato wastewater