Skip to main content
Log in

CRISPR-Cas Technology in Plant Science

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

CRISPR-Cas technology has raised considerable interest among plant scientists, both in basic science and in plant breeding. Presently, the generation of random mutations at a predetermined site of the genome is well mastered, just like the targeted insertion of transgenes, although both remain restricted to species or genotypes amenable for plant transformation. On the other hand, true genome editing, i.e. the deliberate replacement of one or several nucleotides of the genome in a predetermined fashion, is limited to some rather particular examples that generally concern genes allowing positive selection, for example tolerance to herbicides. Therefore, further technological developments are necessary to fully exploit the potential of genome editing in enlarging the gene pool beyond the natural variability available in a given species. In principle, the technology can be applied to any quality related, agronomical or ecological trait, under the condition of upstream knowledge on the genes to be targeted and the precise modifications necessary to improve alleles. Published proof of concepts concern a wide range of agronomical traits, the most frequent being disease resistance, herbicide tolerance and the biochemical composition of harvested products. The regulatory status of the plants obtained by CRISPR-Cas technology raises numerous questions, in particular with regard to the plants that carry in their genomes the punctual modifications caused by the presence of the Cas9 nuclease but not the nuclease itself. Without clarification by the competent authorities, CRISPR-Cas technology would continue to be a powerful tool in functional genomics, but its potential in plant breeding would remain untapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cardenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN Jr. (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

  • Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J, Osterberg JT, Olsen LI, Edenbrandt AK, Vedel SE, Thorsen BJ, Sandoe P, Gamborg C, Kappel K, Palmgren MG (2015) Feasibility of new breeding techniques for organic farming. Trends Plant Sci 20:426–434

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Falt AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  PubMed  CAS  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170:667–677

    Article  PubMed  CAS  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  PubMed  CAS  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco SC, Register IJ, Zhao ZY, Xu D, Jones TJ, Gordon-Kamm WJ (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osterberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE, Christiansen A, Landes X, Andersen MM, Pagh P, Sandoe P, Nielsen J, Christensen SB, Thorsen BJ, Kappel K, Gamborg C, Palmgren M (2017) Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci 22:373–384

    Article  PubMed  CAS  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Podevin N, Davies HV, Hartung F, Nogue F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31:375–383

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480 e478

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Maeda R, Adachi N (2017) Dual loss of human POLQ and LIG4 abolishes random integration. Nat Commun 8:16112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  PubMed  CAS  Google Scholar 

  • Sprink T, Eriksson D, Schiemann J, Hartung F (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17103

    Article  PubMed  Google Scholar 

  • Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2017) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  PubMed  CAS  Google Scholar 

  • Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C (2017) StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot 68:1265–1281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study is funded by the Investissement d’Avenir program of the French National Agency of Research for the project GENIUS (ANR-11-BTBR-0001_GENIUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Rogowsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogowsky, P.M. CRISPR-Cas Technology in Plant Science. Potato Res. 60, 353–360 (2017). https://doi.org/10.1007/s11540-018-9387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-018-9387-y

Keywords

Navigation