Potato Research

, Volume 57, Issue 3–4, pp 311–325 | Cite as

Trace Elements in Potato

  • Filip M. G. Tack


Trace elements occur in low quantities in the environment but have a crucial importance. Some elements are essential for life whereas many elements exhibit toxicity when exposure to them is too high. In this contribution, trace elements in potato are addressed. Although potato is a crop growing in the soil, the tuber does not intensively accumulate trace elements. Concentrations of trace elements are in the range of other vegetables. Generally, potato exhibits a rather low nutritional value for trace elements, with the exception of Fe, Cr, and Cu, although specific cultivars may provide significant contributions to the intake of several elements. Trace element uptake depends strongly on the plant and also on the growing environment. Soil properties that influence uptake include pH, contents of clay and organic matter, and salinity. In soils with baseline metal concentrations, concentrations of potentially toxic elements are of no concern, but Cd needs to be monitored. Environmental care and good soil management is a must to safeguard the safety of food, including potato.


Environment Heavy metals Potato Soil-plant relationship Trace elements 



The author acknowledges Arne Demey for his involvement in the survey.


  1. Alloway BJ (1990) Heavy metals in soils. Blackie and Son, GlasgowGoogle Scholar
  2. Anderson KA, Magnuson BA, Tschirgi ML, Smith B (1999) Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J Agric Food Chem 47:1568–1575. doi: 10.1021/jf980677u
  3. Anonymous (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DCGoogle Scholar
  4. Arnich N, Sirot V, Rivière G, et al (2012) Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem Toxicol 50:2432–2449. doi: 10.1016/j.fct.2012.04.016
  5. Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371–375CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bagla P, Kaiser J (1996) India’s spreading health crisis draws global arsenic experts. Science 274:174CrossRefPubMedGoogle Scholar
  7. Becker W, Jorhem L, Sundström B, Grawé KP (2011) Contents of mineral elements in Swedish market basket diets. J Food Compos Anal 24:279–287. doi: 10.1016/j.jfca.2010.10.001
  8. Biego GH, Joyeux M, Hartemann P, Debry G (1999) Determination of dietary tin intake in an adult French citizen. Arch Environ Contam Toxicol 36:227–232Google Scholar
  9. Choi M-K, Jun Y-S (2008) Analysis of boron content in frequently consumed foods in Korea. Biol Trace Elem Res 126:13–26. doi:10.1007/s12011-008-8179-7Google Scholar
  10. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486CrossRefPubMedGoogle Scholar
  11. De Temmerman L, Waegeneers N, Thiry C, et al (2014) Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci Total Environ 468–469:77–82. doi: 10.1016/j.scitotenv.2013.08.016
  12. Di Giacomo F, Del Signore A, Giaccio M (2007) Determining the geographic origin of potatoes using mineral and trace element content. J Agric Food Chem 55:860–866. doi: 10.1021/jf062690h
  13. Du Laing G, Tack FMG, Verloo MG (2003) Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Anal Chim Acta 497:191–198CrossRefGoogle Scholar
  14. Ekholm P, Reinivuo H, Mattila P, et al (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495. doi: 10.1016/j.jfca.2007.02.007
  15. European Commission (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.Google Scholar
  16. Florijn PJ, van Beusichem ML (1993) Uptake and distribution of cadmium in maize inbred lines. Plant Soil 150:25–32. doi: 10.1007/BF00779172 CrossRefGoogle Scholar
  17. Frossard E, Bucher M, Mächler F et al (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879. doi: 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P CrossRefGoogle Scholar
  18. Hajšlová J, Schulzová V, Slanina P et al (2005) Quality of organically and conventionally grown potatoes: four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit Contam 22:514–534. doi: 10.1080/02652030500137827 CrossRefPubMedGoogle Scholar
  19. Ismail F, Anjum MR, Mamon AN, Kazi TG (2011) Trace metal content of vegetables and fruits of hyderabad retail market. Pak J Nutr 10:365–372Google Scholar
  20. Jinadasa KBPN, Milham PJ, Hawkins CA, et al (1997) survey of cadmium levels in vegetables and soils of Greater Sydney, Australia. J Environ Qual 26:924–933. doi: 10.2134/jeq1997.00472425002600040002x
  21. Jorhem L, Slanina P (2000) Does organic farming reduce the content of Cd and certain other trace metals in plant foods? A pilot study. J Sci Food Agric 80:43–48. doi: 10.1002/(SICI)1097-0010(20000101)80:1<43::AID-JSFA482>3.0.CO;2-Y CrossRefGoogle Scholar
  22. Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem 8(Supplement 2):3–9. doi: 10.1016/S0883-2927(09)80002-4 CrossRefGoogle Scholar
  23. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC, Boca Raton, FLGoogle Scholar
  24. Kiekens L, Camerlynck R (1982) Transfer characteristics for uptake of heavy metals by plants. Landwirtsch Forsch 39:255–261Google Scholar
  25. Larsen EH, Moseholm L, Nielsen MM (1992) Atmospheric deposition of trace elements around point sources and human health risk assessment. II: Uptake of arsenic and chromium by vegetables grown near a wood preservation factory. Sci Total Environ 126:263–275. doi: 10.1016/0048-9697(92)90201-3
  26. Lendinez E, Lorenzo ML, Cabrera C, López MC (2001) Chromium in basic foods of the Spanish diet: seafood, cereals, vegetables, olive oils and dairy products. Sci Total Environ 278:183–189. doi: 10.1016/S0048-9697(01)00647-7
  27. Llobet JM, Falco G, Casas C et al (2003) Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J Agric Food Chem 51:838–842CrossRefPubMedGoogle Scholar
  28. López-Artíguez M, Soria ML, Cameán A, Repetto M (1993) Cadmium in the diet of the local population of Seville (Spain). Bull Environ Contam Toxicol 50:417–424PubMedGoogle Scholar
  29. Mansour SA, Belal MH, Abou-Arab AAK, et al (2009) Evaluation of some pollutant levels in conventionally and organically farmed potato tubers and their risks to human health. Food Chem Toxicol 47:615–624. doi: 10.1016/j.fct.2008.12.019
  30. McLaughlin MJ, Palmer LT, Tiller KG et al (1994) Increased soil salinity causes elevated cadmium concentrations in field-grown potato tubers. J Environ Qual 23:1013–1018CrossRefGoogle Scholar
  31. Milacic R, Kralj B (2003) Determination of Zn, Cu, Cd, Pb, Ni and Cr in some Slovenian foodstuffs. Eur Food Res Technol Z Für Lebensm-Unters -Forsch A 217:211–214. doi: 10.1007/s00217-003-0755-7
  32. Muñoz O, Bastias JM, Araya M, et al (2005) Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem Toxicol 43:1647–1655. doi: 10.1016/j.fct.2005.05.006
  33. Nassar AMK, Sabally K, Kubow S et al. (2012) Some Canadian-grown potato cultivars contribute to a substantial content of essential dietary minerals. J Agric Food Chem 60:4688–4696. doi: 10.1021/jf204940t CrossRefPubMedGoogle Scholar
  34. Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Nelson DW, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Chemical and microbiological properties. ASA, Madison, Wisconsin, pp 539–579Google Scholar
  35. Nielson KK, Mahoney AW, Williams LS, Rogers VC (1991) Screening for elevated lead and tin in fruits and vegetables by Nondestructive X-ray fluorescence. J Food Compos Anal 4:206–215. doi: 10.1016/0889-1575(91)90032-2
  36. Nogawa K (1981) Itai-Itai disease and follow-up studies. In: Nriagu, JO (ed) Cadmium in the Environment, Part 11, Health Effects. Wiley, New York, p 1–37Google Scholar
  37. Öborn I, Jansson G, Johnsson L (1995) A field study on the influence of soil ph on trace element levels in spring wheat (Triticum aestivum), potatoes (Solanum tuberosum) and carrots (Daucus carota). Water Air Soil Pollut 85:835–840. doi: 10.1007/BF00476933 CrossRefGoogle Scholar
  38. Oporto C, Vandecasteele C, Smolders E (2007) Elevated cadmium concentrations in potato tubers due to irrigation with river water contaminated by Mining in Potosí, Bolivia. J Environ Qual 36:1181. doi: 10.2134/jeq2006.0401
  39. Ozturk E, Atsan E, Polat T, Kara K (2011) Variation in heavy metal concentrations of potato (Solanum tuberosum L.) cultivars. J Anim Plant Sci 21:235–239Google Scholar
  40. Parker DR, Pedler JF, Ahnstrom ZAS, Resketo M (2001) Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20:899–906CrossRefPubMedGoogle Scholar
  41. Parveen Z, Khuhro MI, Rafiq N (2003) Market Basket Survey for Lead, Cadmium, Copper, Chromium, Nickel, and Zinc in Fruits and Vegetables. Bull Environ Contam Toxicol 71:1260–1264. doi: 10.1007/s00128-003-8640-4
  42. Queirolo F, Stegen S, Restovic M, et al (2000) Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile. Sci Total Environ 255:75–84. doi: 10.1016/S0048-9697(00)00450-2
  43. Radwan MA, Salama AK (2006) Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem Toxicol 44:1273–1278. doi: 10.1016/j.fct.2006.02.004
  44. Rainey CJ, Nyquist LA, Coughlin JR, Downing RG (2002) Dietary boron intake in the United States: CSFII 1994–1996. J Food Compos Anal 15:237–250Google Scholar
  45. Rivero RC, Hernández PS, Rodrı́guez EMR et al (2003) Mineral concentrations in cultivars of potatoes. Food Chem 83:247–253. doi: 10.1016/S0308-8146(03)00087-6 CrossRefGoogle Scholar
  46. Sakamoto M, Nakano A, Akagi H (2001) Declining Minamata male birth ratio associated with increased male fetal death due to heavy methylmercury pollution. Environ Res 87:92–98CrossRefPubMedGoogle Scholar
  47. Sanchez-Castillo CP, Dewey PJS, Aguirre A, et al (1998) The mineral content of Mexican fruits and vegetables. J Food Compos Anal 11:340–356. doi: 10.1006/jfca.1998.0598
  48. Santos EE, Lauria DC, Porto da Silveira CL (2004) Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci Total Environ 327:69–79. doi: 10.1016/j.scitotenv.2004.01.016 CrossRefPubMedGoogle Scholar
  49. Simsek A, Velioglu YS, Coskun AL, Sayli BS (2003) Boron concentrations in selected foods from borate-producing regions in Turkey. J Sci Food Agric 83:586–592. doi: 10.1002/jsfa.1408
  50. Singh V, Garg AN (2006) Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food Chem 94:81–89. doi: 10.1016/j.foodchem.2004.10.053
  51. Smies M (1983) Biological aspects of trace element speciation in the aquatic environment. In: Leppard G G (ed). Trace element speciation in surface waters and its ecological implications. Plenum, New York, p 177–191Google Scholar
  52. Sobukola OP, Adeniran OM, Odedairo AA, Kajihausa OE (2010) Heavy metal levels of some fruits and leafy vegetables from selected markets in Lagos, Nigeria. Afr J Food Sci 4:389–393Google Scholar
  53. Sparks DL (2001) Elucidating the fundamental chemistry of soils: past and recent achievements and future frontiers. Geoderma 100:303–319CrossRefGoogle Scholar
  54. Šrek P, Hejcman M, Kunzová E (2010) Multivariate analysis of relationship between potato (Solanum tuberosum L.) yield, amount of applied elements, their concentrations in tubers and uptake in a long-term fertilizer experiment. Field Crops Res 118:183–193. doi: 10.1016/j.fcr.2010.05.009 CrossRefGoogle Scholar
  55. Sungur Ş, Okur R (2009) Using azomethine-H method determination of boron contents of various foods consumed in Hatay Region in Turkey. Food Chem 115:711–714. doi: 10.1016/j.foodchem.2008.11.103
  56. Tack FMG (2010) Trace elements: general soil chemistry, principles and processes. In: Hooda P (ed) Trace elements in soils. Wiley-Blackwell, Chichester, pp 9–37Google Scholar
  57. Tahvonen R (1993) Contents of selected elements in some fruits, berries, and vegetables on the Finnish market in 1987–1989. J Food Compos Anal 6:75–86. doi: 10.1006/jfca.1993.1009 CrossRefGoogle Scholar
  58. Tondel M, Rahman M, Magnuson A et al (1999) The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107:727CrossRefPubMedCentralPubMedGoogle Scholar
  59. Tsongas TA, Meglen RR, Walravens PA, Chappell WR (1980) Molybdenum in the diet: an estimate of average daily intake in the United States. Am J Clin Nutr 33:1103–1107Google Scholar
  60. Van Dokkum W (1995) The intake of selected minerals and trace elements in European countries. Nutr Res Rev 8:271–302. doi: 10.1079/NRR19950016 CrossRefPubMedGoogle Scholar
  61. Van Dokkum WV, De Vos RH, Muys T, Wesstra JA (1989) Minerals and trace elements in total diets in The Netherlands. Br J Nutr 61:7–15. doi: 10.1079/BJN19890087 CrossRefPubMedGoogle Scholar
  62. Van Ranst E, Verloo M, Demeyer A, Pauwels JM (1999) Manual for the soil chemistry and fertility laboratory. International Training Centre for Post-Graduate Soil Scientists, Gent, BelgiumGoogle Scholar
  63. White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593. doi: 10.1016/j.tplants.2005.10.001 CrossRefPubMedGoogle Scholar
  64. White PJ, Bradshaw JE, Finlay M et al (2009) Relationships Between Yield and Mineral Concentrations in Potato Tubers. HortSci 44:6–11Google Scholar
  65. Ysart G, Miller P, Croasdale M et al (2000) 1997 UK Total Diet Study dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc. Food Addit Contam 17:775–786. doi: 10.1080/026520300415327 CrossRefPubMedGoogle Scholar
  66. Zhao F-J, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380CrossRefPubMedGoogle Scholar

Copyright information

© European Association for Potato Research 2015

Authors and Affiliations

  1. 1.Department of Analytical Chemistry and Applied EcochemistryGhent UniversityGentBelgium

Personalised recommendations