Advertisement

Potato Research

, Volume 56, Issue 3, pp 179–204 | Cite as

Effect of Different Defoliation Systems of Ryegrass–Clover on Yield and Selected Quality Parameters of Organic Potatoes (Solanum tuberosum L.) for Industrial Processing at Harvest and After Storage

  • J. F. Dresow
  • T. Krause
  • N. U. Haase
  • R. Loges
  • J. Heß
  • H. Böhm
Article

Abstract

The nitrogen supply plays an important role in achieving quality characteristics in organic potato farming. Different defoliation systems of ryegrass–clover may influence the amount of fixed nitrogen available to the tubers. In a field experiment, the effect of different defoliation systems (cutting, mulching and a combination of them) of the pre-crop ryegrass–clover on selected quality attributes of organically grown potatoes, destined for processing into French fries (cv. Agria) or crisps (cv. Marlen), were conducted in two consecutive years (2003 and 2004). Parameters studied included compounds related to the sensory properties of potato food (tuber dry matter, starch, reducing sugars) as well as nutritional quality (nitrogen, minerals). Selected agronomic parameters such as total tuber yields and tuber size distribution were also compared. Furthermore, the influence of additional slurry fertilisation and 4 months of storage on these parameters were investigated. Total yields and portion of tuber yield 50–60 mm were significantly affected by the pure mulching variant in 2003. In 2003, the starch concentration at harvest, as well as after storage, was above the required minimum of 22% (cv. Marlen) and 19% (cv. Agria), while in 2004, this was slightly beneath these values. In 2004, a significant increase of starch concentration by the pure cutting variant was observed. In both years, mulched ryegrass–clover caused a decrease in tuber DM contents of 2.10 and 3.54%, respectively, compared to the cutting systems. Fertilisation significantly decreased DM and starch concentration. In 2004, the reducing sugar concentration of tubers of cv. Marlen from the pure cutting system was with 2.1 g kg−1 FM above the required maximum of 1.5 g kg−1 for crisps. In addition, storage led to a three to fivefold increase of reducing sugars concentrations in the tubers in this year. After slurry fertilisation, 8.8% higher N contents and up to 36% higher K concentrations were measured. Mulching of the pre-crop combined with slurry application led to an up to 61% higher tuber K concentration compared to the cutting system. The results indicate that different defoliation systems of the pre-crop ryegrass–clover and slurry fertilisation had only minor effects on internal tuber quality attributes. Quality parameters were more affected by the prevailing weather conditions in combination with the genotype of different potato cultivars.

Keywords

Cultivar Dry matter concentration Fertilisation French fries Mineral elements Nitrogen Potato crisps Reducing sugars Ryegrass–clover Starch 

Abbreviations

C

Cutting

CV

Cultivar

DM

Dry matter concentration

DS

Defoliation system

FW

Fresh weight

K

Potassium

LSD

Least significant differences

Mg

Magnesium

MU

Mulching

N

Nitrogen

P

Phosphorous

REP

Replication (block)

SF

Slurry fertilisation

STOR

Time of assessment

Notes

Acknowledgments

This work was funded by the German Federal Agency for Agriculture and Food (BLE, Bonn).

References

  1. American Association of Cereal Chemistry (AACC) (1993a) Approved method 44-15A (moisture-air oven methods). The Association, St. PaulGoogle Scholar
  2. American Association of Cereal Chemistry (AACC) (1993b) Approved method 44-60 (moisture-dying on quarz sand). The Association, St. PaulGoogle Scholar
  3. AMI (2010) AMI-Strukturdatenerhebung Ökolandbau 2009 - Landwirtschaftliche Produktionsstruktur in Deutschland [online]. Agrarmarkt Informations-Gesellschaft mbH. [Online] www.marktundpreis.de/agrarmarkt/oekomarkt.asp
  4. Amir J, Kahn V, Untermann M (1977) Respiration, ATP level, and sugar accumulation in potato tubers during storage at 4°C. Phytochemistry 16:1495–1498CrossRefGoogle Scholar
  5. Asmus F (1991) Einfluß organischer Dünger auf Ertrag, Humusgehalt des Bodens und Humusreproduktion. Berichte über Landwirtschaft 206:127–139Google Scholar
  6. Boehringer (1995) Methoden der enzymatischen Bio-Analytik und Lebensmittelanalytik. Biochemica Boehringer, MannheimGoogle Scholar
  7. Böhm H (2003) Anbau von Kartoffeln zur industriellen Verarbeitung. In: Möller K, Kolbe H, Böhm H (eds) Handbuch Ökologischer Landbau. Besondere Produktionsverfahren. Agrarverlag, Leopoldsdorf, pp 158–164Google Scholar
  8. Böhm H, Dewes T (1997) Auswirkungen gesteigerter Stallmistdüngung auf Ertrag, Qualität und Nachernteverhalten bei ausgewählten Kartoffelsorten. 4. Wissenschaftstagung zum ökologischen Landbau, Bonn, 03–04 March 1997, pp. 367–374Google Scholar
  9. Böhm H, Haase T, Kölsch E, Putz B (2002) Ertrag und Verarbeitungseignung von Kartoffeln aus Ökologischem Landbau. Mitt Ges Pflanzenbauwiss 14:86–87Google Scholar
  10. Bundessortenamt (2004) Beschreibende Sortenliste 2004 - Kartoffeln. Deutscher Landwirtschaftsverlag GmbH, HannoverGoogle Scholar
  11. Cunningham CE, Stevenson FJ (1963) Inheritance of factors affecting potato chip color and their association with specific gravity. Am Potato J 40:253–265CrossRefGoogle Scholar
  12. Davies HV, Jefferies RA, Scobie L (1989) Hexose accumulation in cold-stored tubers of potato (Solanum tuberosum L.)—the effects of water-stress. J Plant Physiol 134(4):471–475CrossRefGoogle Scholar
  13. De Wilde T, De Meulenaer B, Mestdagh F, Govaert Y, Vandeburie S, Ooghe W, Fraselle S, Demeulemeester K, Van Peteghem C, Calus A, Degroodt J-M, Verhe R (2006) Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003. J Agric Food Chem 54:404–408PubMedCrossRefGoogle Scholar
  14. Dreymann S (2005) N-Haushalt unterschiedlich bewirtschafteter Rotklee-Bestände und deren Bedeutung für die Folgefrucht Weizen im Ökologischen Landbau. PhD Thesis University of Kiel.Google Scholar
  15. Frame J, Charlton JFL, Laidlaw AS (1998) Temperate forage legumes. CAB International, WallingfordGoogle Scholar
  16. Granda C, Moreira RG, Castell-Perez E (2005) Effect of raw potato composition on acrylamide formation in potato chips. J Food Sci 70(9):E519–E525CrossRefGoogle Scholar
  17. Grassert V, Vogel J, Bartel W (1984) Einfluss der Sorte und einiger Umweltfaktoren auf die Neigung von Kartoffelknollen zur Zuckerbildung während einer mehrmonatigen Lagerung bei 4°C. Potato Res 27:365–372CrossRefGoogle Scholar
  18. Guarda G, Tassoni F, Zuffellato F (1994) Effects of mineral and organic nitrogen fertilizing on production and quality of potato chips. In: Borin M, Sattin M (eds) Proceedings of the third congress of the European Society for Agronomy, Padova University, September 18 to 22, 1994, Colmar, France, pp. 600–601Google Scholar
  19. Haase NU (1992) Auswirkungen einer reduzierten N-Düngung auf die Produktqualität von Verarbeitungskartoffeln. VDLUFA-Schriftenreihe, Kongressband 35:507–510Google Scholar
  20. Haase NU (2003) Estimation of dry matter and starch concentration in potatoes by determination of under-water weight and near infrared spectroscopy. Potato Res 46(3/4):117–127CrossRefGoogle Scholar
  21. Haase NU, Matthaus B, Vosmann K (2003) Acrylamid in Kartoffelerzeugnissen. Obst, Gemüse- und Kartoffelverarbeitung 88(1/2/2003):16–19Google Scholar
  22. Haase T, Krause T, Haase N U, Böhm H, Loges R, Heß J, (2005) Effect of location and cultivar on yield and quality of organic potatoes for processing to crisps. In: Ritter E, Carrascal A (eds) 16th Triennial Conference of the EAPR, Abstracts of papers and posters, II Poster presentations, EAPR-2005, July 17–22, 2005, Bilbao, Spain, poster 61, 699–703Google Scholar
  23. Haase T, Schüler C, Haase NU, Heß J (2007a) Suitability of organic potatoes for industrial processing: effect of agronomical measures on selected quality parameters at harvest and after storage. Potato Res 50(2):115–141CrossRefGoogle Scholar
  24. Haase T, Schüler C, Heß J (2007b) The effect of different N and K sources on tuber nutrient uptake, total and graded yield of potatoes (Solanum tuberosum L.) for processing. Eur J Agron 26(3):187–197CrossRefGoogle Scholar
  25. Haase T, Schuler C, Piepho HP, Thoni H, Heß J (2007c) The effect of preceding crop and pre-sprouting on crop growth, N use and tuber yield of maincrop potatoes for processing under conditions of N stress. J Agron Crop Sci 193(4):270–291CrossRefGoogle Scholar
  26. Haase T, Haase N, Heß J (2008) Impact of agronomic measures on yield and quality of organic potatoes (Solanum tuberosum L.) for industrial processing. Cultivating the future based on science Volume 1: Organic Crop Production Proceedings of the Second Scientific Conference of the International Society of Organic Agriculture Research (ISOFAR), held at the 16th IFOAM Organic World Conference in Modena:572–575Google Scholar
  27. Hack H, Gall H, Klemke T, Klose R, Meier U, Stauss R, Witzenberger A (1993) Phänologische Entwicklunsstadien der Kartoffel (Solanum tuberosum L.). Nachrichtenbl Deut Pflanzenschutzd 45(1):11–19Google Scholar
  28. Hartmann S, Sticksel E (2010) Kleegras für die Biogasanlage. Arbeitsgemeinschaft Landtechnik und landwirtschaftliches Bauwesen in Bayern e.V., Freising. [Online] www.biogas-forum-bayern.de/publikationen/Bewertung_von_Fruchtfolgen_fuer_die_Biogaserzeugung_in_Bayern.pdf
  29. Heuwinkel H, Kaiser M, Schmidhalter U, Gutser R (2002) Mulchen von Kleegras vermindert den N-Gewinn: Ausmaß und Ursachen. VDLUFA-Schriftenreihe, Kongressband 58:72–73Google Scholar
  30. Høgh-Jensen H, Wollenweber B, Schjoerring JK (1997) Kinetics of nitrate and ammonium absorption and accompanying H+ fluxes in roots of Lolium perenne L. and N2-fixing Trifolium repens L. plant. Cell Environ 20:1184–1192CrossRefGoogle Scholar
  31. Hunnius W (1972) Welche Faktoren beeinflussen Stärkebildung und Stärkegehalt der Kartoffel. Stärkekartoffel 17(1):1–4Google Scholar
  32. Hunnius W (1977) Effect of cultivation on suitability for storage and storage behaviour of potatoes. Landwirtschaftliche Forschung (Sonderheft 34/1):193–205Google Scholar
  33. James WC (1971) A manual of assessment keys for plant diseases. Am Phytopath Soc Press. St. Paul, MN, USA, pp 43 Google Scholar
  34. Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53(3):983–997PubMedCrossRefGoogle Scholar
  35. Kolbe H (1990) Kartoffeldüngung unter differenzierten ökologischen Bedingungen. PhD Thesis University of Göttingen. Severin Verlag, GöttingenGoogle Scholar
  36. Kolbe H (2003) Kartoffelqualität. In: Möller K, Kolbe H, Böhm H (eds) Handbuch Ökologischer Kartoffelanbau; (10). Leopoldsdorf : Österreichischer Agrarverlag, pp 143–150Google Scholar
  37. Kolbe H, Muller K, Olteanu G, Gorea T (1995) Effects of nitrogen, phosphorus and potassium fertilizer treatments on weight loss and changes in chemical composition of potato tubers stored at 4°C. Potato Res 38(1):97–107CrossRefGoogle Scholar
  38. Krause T, Haase T, Böhm H, Heß J, Loges R Haase N U (2005) Influence of variety and site on yield structure and quality of potatoes for processing to chips in organic farming. In: Ritter E, Carrascal A (eds) 16th Triennial Conference of the EAPR, Abstracts of papers and posters, II Poster presentations, EAPR-2005, July 17 to 22, 2005, Bilbao, Spain, poster 53, 676–679Google Scholar
  39. Kuhnert H, Feindt PH, Beusmann V (2004) Ausweitung des ökologischen Landbaus in Deutschland - Voraussetzungen, Strategien, Implikationen, politische Optionen. Final Report. Reihe A: Angewandte Wissenschaft Heft 509, Schriftenreihe des Bundesministeriums für Verbraucherschutz, Ernährung und Landwirtschaft. Landwirtschaftsverlag, Münster-HiltrupGoogle Scholar
  40. Kumar D, Singh BP, Kumar P (2004) An overview of the factors affecting sugar content of potatoes. Ann Appl Biol 145(3):247–256CrossRefGoogle Scholar
  41. Loges R, Kornher A, Taube F (1998) Ertrag, Futterqualität und N2-Fixierungsleistung von Rotklee und Rotklee/Gras. 42. Jahrestagung der AG Grünland und Futterbau der Gesellschaft für Pflanzenbauwissenschaften, Giessen: Gesellschaft für Pflanzenbauwissenschaften. Mitteilungen der Gesellschaft für Pflanzenbau wissenschaften. pp 139–142Google Scholar
  42. Lulai EC, Orr PH (1979) Influence of potato specific gravity on yield and oil content of chips. Am Potato J 56(8):379–390CrossRefGoogle Scholar
  43. Matsuura-Endo C, Ohara-Takada A, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2006) Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Biosci Biotechnol Biochem 70(5):1173–1180PubMedCrossRefGoogle Scholar
  44. Matthies K (1991) Qualitätserfassung pflanzlicher Produkte aus unterschiedlichen Düngungs- und Anbauverfahren. PhD Thesis Fachgebiet Ökologischer Landbau, Gesamthochschule Kassel, pp 1–199Google Scholar
  45. Mazza G, Hung J, Dench MJ (1983) Processing/nutritional quality changes in potato tubers during growth and long term storage. Can Inst Food Sci Technol J 16(1):39–44CrossRefGoogle Scholar
  46. Meineke S (1994) Einfluß mineralischer, organischer sowie organisch-mineralischer Düngung auf Erträge und Gehalte an einigen qualitätsbestimmenden Inhaltsstoffen in Kartoffeln, Möhren, Spinat und Tomaten aus mehrjährigen Feldversuchen und Gefäßversuchen. PhD Thesis University of Göttingen. Cuvillier Verlag, Göttingen.Google Scholar
  47. Millard P (1986) The nitrogen content of potato (Solanum tuberosum L.) tubers in relation to nitrogen application—the effect on amino acid composition and yields. J Sci Food Agric 37(2):107–114CrossRefGoogle Scholar
  48. Misra A, Kulsherstha K (2003) Effect of storage on nutritional value of potato flour made from three potato varieties. Plant Foods Human Nutr 58:1–10Google Scholar
  49. Moll A (1967) The influence of N-P-K fertilizers and soil moisture on the sugar content of potato tubers. Z Pflanzenern Bodenkd 118(1):35–43CrossRefGoogle Scholar
  50. Möller K, Kolbe H (2003) Fruchtfolge, Nährstoffversorgung, Düngung. In: Möller K, Kolbe H, Böhm H (eds) Ökologischer Kartoffelbau; (4). Österreichischer Agrarverlag, Leopoldsdorf, pp 27–55Google Scholar
  51. Mottram DS, Wedzicha BI, Dodson AT (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449PubMedCrossRefGoogle Scholar
  52. Müller K, Cervenkova I (1978) Die Ermittlung des Stärke- und Trockensubstanzgehaltes in Kartoffelknollen nach Bestimmung des Unterwassergewichtes an Hand modifizierter Tabellenwerte. Die Stärke 30(1):12–20CrossRefGoogle Scholar
  53. Neuhoff D, Köpke U (2002) Potato production in organic farming: effects of increased manure application and different cultivars on tuber yield and quality. Pflanzenbauwissenschaften 6(2):49–56Google Scholar
  54. Neuhoff D, Schulz DG, Köpke U (1997) Einfluss von Sorte und gesteigerter Rottemistdüngung auf Ertrag und Qualität von mittelfrühen Speisekartoffeln. In: Köpke U, Eisele J-A (eds) Beiträge zur 4. Wissenschaftstagung zum ökologischen Landbau, Berlin:361–367Google Scholar
  55. Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T, Yamauchi H, Mori M (2005) Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem 69(7):1232–1238PubMedCrossRefGoogle Scholar
  56. Owings TR, Iritani WM, Nagel CW (1978) Respiration rates and sugar accumulation in normal and moisture stressed Russet Burbank potatoes. Am Potato J 55(4):211–220CrossRefGoogle Scholar
  57. Pawelzik E (2000) Mineralsstoffe in der Kartoffel: Wie beeinflussen sie die Qualität von Verarbeitungsprodukten. Obst, Gemüse- und Kartoffelverarbeitung 85(5/6/2000):225–230Google Scholar
  58. Peretzki F, Heigl L (2004) Nährstoffgehalte, Nährstoffwirkung, Mengenanfall, Ausbringung. [Online] http://www.lfl.bayern.de
  59. Putz B, Gehse M (1975) Spezielle Probleme bei der Chips-Herstellung. Die Stärke 27(1):12–16CrossRefGoogle Scholar
  60. Putz B, Lindhauer MG (1994) Reducing sugars in potato-tubers as in important factor for processing. Agribiological Research 47(3–4):335–344Google Scholar
  61. Roe MA, Faulks RM (1991) Color development in a model system during frying—role of individual amino-acids and sugars. J Food Sci 56(6):1711–1713CrossRefGoogle Scholar
  62. Roe MA, Faulks RM, Belsten JL (1990) Role of reducing sugars and amino-acids in fry color of chips from potatoes grown under different nitrogen regimes. J Sci Food Agric 52(2):207–214CrossRefGoogle Scholar
  63. SAS Institute (2004) SAS/STAT user’s guide. SAS Inc, CaryGoogle Scholar
  64. Schittenhelm S, Sourell H, Lopmeier FJ (2006) Drought resistance of potato cultivars with contrasting canopy architecture. Eur J Agron 24(3):193–202CrossRefGoogle Scholar
  65. Schuhmann P (1999) Die Erzeugung von Kartoffeln zur industriellen Verarbeitung. Buchedition AgriMedia, Bergen/Dumme, pp 1–208Google Scholar
  66. Schulz D, Koch K, Kromer K-H, Köpke U (1997) Einfluss unterschiedlicher Anbauarten - mineralisch, organisch, biologisch-dynamisch - auf Kartoffeln: Inhaltsstoffe, Sensorik, Festigkeitskennwerte und bildschaffende Methoden. Beitr 4. Wiss -Tagung Ökol Landbau, Bonn:382–388Google Scholar
  67. Smith O (1975) Effect of cultural and environmental conditions on potatoes for processing. In: Talburt WF, Smith O (eds) Potato processing; 3; (4). AVI, Westport, pp 67–127Google Scholar
  68. Souci SW, Fachmann W, Kraut H (2008) Kartoffel - Potato - Pomme de terre (Solanum tuberosum L.). In: Food composition and nutrition tables: Die Zusammensetzung der Lebensmittel, Nährwert-Tabellen - La composition des aliments - Tableaux des valeurs nutritives; 7. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp 749–751Google Scholar
  69. Spiegel H, Sager M (2008) Elementzusammensetzung von Weizen und Kartoffeln in Österreich unter Berücksichtigung des Einflusses von Sorte und Standort. Die Ernährung 32(7/8):297–308Google Scholar
  70. Stanley R, Jewell S (1989) The influence of source and rate of potassium fertilizer on the quality of potatoes for French fry production. Potato Res 32:439–446CrossRefGoogle Scholar
  71. Stein-Bachinger K, Werner W (1997) Effect of manure on crop yield and quality in an organic agricultural system. Biol Agric Hortic 14(3):221–235CrossRefGoogle Scholar
  72. Stevenson FJ, Akeley RV, Cunningham CE (1964) The potato: its genetic and environmental variability. Am Potato J 41(2):46–53CrossRefGoogle Scholar
  73. Stopes C, Millington S, Woodward L (1996) Dry matter and nitrogen accumulation by three leguminous green manure species and the yield of a following wheat crop in an organic production system. Agric Ecosyst Environ 57:189–196Google Scholar
  74. Stricker HW (1974) Über den Einfluss steigender und gestaffelter Stickstoffgaben auf den Gehalt an Zuckern in der Kartoffelknolle. Potato Res 18:52–63CrossRefGoogle Scholar
  75. Stute JK, Posner JL (1995) Legume cover crops as a nitrogen source for corn in an oat–corn rotation. J Prod Agric 8(3):385–390CrossRefGoogle Scholar
  76. Swiniarski E, Ladenberger D (1970) The sugar content of potato tubers grown with different rates of nitrogen application. Potato Res 1:114–118CrossRefGoogle Scholar
  77. Thybo AK, Molgaard JP, Kidmose U (2001) Effect of different organic growing conditions on quality of cooked potatoes. J Sci Food Agric 82(1):12–18CrossRefGoogle Scholar
  78. VDLUFA (1997) Methodenbuch Band III: Die chemische Untersuchung von Futtermitteln. 4. Ergänzungslieferung. VDLUFA, DarmstadtGoogle Scholar
  79. Westermann DT, James DW, Tindall TA, Hurst RL (1994) Nitrogen and potassium fertilization of potatoes—sugars and starch. Am Potato J 71(7):433–453CrossRefGoogle Scholar

Copyright information

© EAPR 2013

Authors and Affiliations

  • J. F. Dresow
    • 1
  • T. Krause
    • 1
  • N. U. Haase
    • 2
  • R. Loges
    • 4
  • J. Heß
    • 3
  • H. Böhm
    • 1
  1. 1.Thünen Institute of Organic FarmingWesterauGermany
  2. 2.Department of Safety and Quality of CerealsMax Rubner-InstituteDetmoldGermany
  3. 3.Department of Organic Farming and Cropping SystemsUniversity of Kassel-WitzenhausenWitzenhausenGermany
  4. 4.Department of Crop Science and Plant BreedingUniversity of KielKielGermany

Personalised recommendations