Advertisement

Potato Research

, Volume 54, Issue 4, pp 325–340 | Cite as

Exploiting Knowledge of Pathogen Effectors to Enhance Late Blight Resistance in Potato

  • S. C. Whisson
  • A. O. Avrova
  • P. C. Boevink
  • M. R. Armstrong
  • Z. A. Seman
  • I. Hein
  • P. R. J. Birch
Article

Abstract

Late blight disease of potato, caused by Phytophthora infestans, is the most serious disease of this crop on a global scale and is thus a threat to food security. Use of resistant potato cultivars to prevent late blight does not have a very successful history, as P. infestans genotypes have overcome the deployed resistances. Thus, there is a need to identify more durable resistances, or identify and develop novel forms of resistance that exploit vulnerabilities in the biology of P. infestans. Application of molecular biology tools in P. infestans research has recently culminated in the identification of several avirulence effectors matching specific resistances in potato, the sequencing of the P. infestans genome and identification of hundreds of candidate translocated pathogen ‘RXLR’ effector proteins that may promote disease progression. Strategies for prioritising these effectors for further research are revealing those that are highly expressed during infection, difficult for the pathogen to alter rapidly, essential for P. infestans pathogenesis and recognized by resistant accessions of Solanum spp. These effector characteristics are being used to identify and characterise resistances from Solanum germplasm that may prove more durable. In addition to RXLR effectors, P. infestans also produces a broad spectrum of additional secreted proteins. These are exposed to plant cells and may potentially act to trigger resistance, either as broad spectrum pathogen-associated molecular patterns or as specific effectors of resistance. Alternatively, conserved secreted proteins may be attractive targets for novel agrichemical development. We have silenced a diverse selection of these candidate secreted proteins in P. infestans and demonstrated their effects on late blight disease development. Results from these studies are aiding a deeper understanding of P. infestans disease development and identifying potential pathogen weaknesses for exploitation in future control measures.

Keywords

Effector Late blight Pathogenesis Phytophthora infestans Potato Resistance Solanum 

Notes

Acknowledgements

SCW, AOA, PCB, MRA, IH and PRJB were supported by the Scottish Government Rural and Environment Science and Analytical Services and the UK Biotechnology and Biological Sciences Research Council. ZAS was supported by the Malaysian Agricultural Research and Development Institute.

References

  1. Ah Fong AMV, Bormann-Chung CA, Judelson HS (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45:1197–1205PubMedCrossRefGoogle Scholar
  2. Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960PubMedCrossRefGoogle Scholar
  3. Armstrong MR, Whisson SC, Pritchard L, Bos JIB, Venter E, Avrova AO, Rehmany AP, Böhme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PRJ (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci USA 102:7766–7771PubMedCrossRefGoogle Scholar
  4. Avrova AO, Venter E, Birch PRJ, Whisson SC (2003) Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection. Fungal Genet Biol 40:4–14PubMedCrossRefGoogle Scholar
  5. Avrova AO, Whisson SC, Pritchard L, Venter E, De Luca S, Hein I, Birch PR (2007) A novel non-protein-coding infection-specific gene family is clustered throughout the genome of Phytophthora infestans. Microbiology 153:747–759PubMedCrossRefGoogle Scholar
  6. Avrova A, Boevink P, Young V, Grenville-Briggs LJ, van West P, Birch PRJ, Whisson SC (2008) A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cell Microbiol 10:2271–2284PubMedCrossRefGoogle Scholar
  7. Bartnicki-Garcia S (1969) Cell wall differentiation in the Phycomycetes. Phytopathology 59:1065–1071PubMedGoogle Scholar
  8. Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungus phylogeny. In: Harborne JB (ed) Phytochemical phylogeny. Academic, London, pp 81–102Google Scholar
  9. Bernal AJ, Pan Q, Pollack J, Rose L, Kozik A, Willits N, Luo Y, Guittet M, Kochetkova E, Michelmore RW (2005) Functional analysis of the plant disease resistance gene Pto using DNA shuffling. J Biol Chem 280:23073–23083PubMedCrossRefGoogle Scholar
  10. Birch PRJ, Boevink PC, Gilroy EM, Hein I, Pritchard L, Whisson SC (2008) Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11:373–379PubMedCrossRefGoogle Scholar
  11. Blum M, Boehler M, Randall E, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova A, Whisson S, Fonne-Pfister R (2010) Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Mol Plant Pathol 11:227–243PubMedCrossRefGoogle Scholar
  12. Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PRJ, Kamoun S (2006) The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48:165–176PubMedCrossRefGoogle Scholar
  13. Bos JI, Chaparro-Garcia A, Quesada-Ocampo LM, McSpadden Gardener BB, Kamoun S (2009) Distinct amino acids of the Phytophthora infestans effector AVR3a condition activation of R3a hypersensitivity and suppression of cell death. Mol Plant Microbe Interact 22:269–281PubMedCrossRefGoogle Scholar
  14. Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Zhendong T, Engelhardt S, Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch PRJ (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci USA 107:9909–9914PubMedCrossRefGoogle Scholar
  15. Bourke A (1991) Potato late blight in Europe in 1845: the scientific controversy. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, pp 12–24Google Scholar
  16. Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G, Scheel D, Nürnberger T (2002) Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–6688PubMedCrossRefGoogle Scholar
  17. Bryan GJ, Hein I (2008) Genomic resources and tools for gene function analysis in potato. Int J Plant Genomics 2008:216513. doi: 10.1155/2008/216513 PubMedGoogle Scholar
  18. Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2:e790. doi: 10.1371/journal.pone.0000790 PubMedCrossRefGoogle Scholar
  19. Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C, Heupink A, van de Vondervoort PJ, Jacobsen E, Visser RG, van der Vossen EA, Govers F, Vleeshouwers VG (2009) Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol Plant Microbe Interact 22:1535–1545PubMedCrossRefGoogle Scholar
  20. Damasceno CM, Bishop JG, Ripoll DR, Win J, Kamoun S, Rose JK (2008) Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo beta-1,3-glucanases. Mol Plant Microbe Interact 21:820–830PubMedCrossRefGoogle Scholar
  21. Dou D, Kale SD, Wang X, Jiang RH, Bruce NA, Arredondo FD, Zhang X, Tyler BM (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20:1930–1947PubMedCrossRefGoogle Scholar
  22. Drenth A, Tas ICQ, Govers F (1994) DNA fingerprinting uncovers a new sexually reproducing population of Phytophthora infestans in the Netherlands. Eur J Plant Pathol 100:97–107CrossRefGoogle Scholar
  23. Drenth A, Janssen EM, Govers F (1995) Formation and survival of oospores of Phytophthora infestans under natural conditions. Plant Pathol 44:86–94CrossRefGoogle Scholar
  24. Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402PubMedCrossRefGoogle Scholar
  25. Gaulin E, Dramé N, Lafitte C, Torto-Alalibo T, Martinez Y, Ameline-Torregrosa C, Khatib M, Mazarguil H, Villalba-Mateos F, Kamoun S, Mazars C, Dumas B, Bottin A, Esquerré-Tugayé MT, Rickauer M (2006) Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766–1777PubMedCrossRefGoogle Scholar
  26. Gilroy EM, Breen S, Whisson SC, Squires J, Hein I, Kaczmarek M, Turnbull D, Boevink PC, Lokossou A, Cano LM, Morales J, Avrova AO, Pritchard L, Randall E, Govers F, van West P, Kamoun S, Vleeshouwers VGAA, Cooke DEL, Birch PRJ (2011a) Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and Piavr2 in Phytophthora infestans determine virulence on R2 plants. New Phytol 191:763–776. doi: 10.1111/j.1469-8137.2011.03736.x PubMedCrossRefGoogle Scholar
  27. Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PR (2011b) CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol 190:653–666PubMedCrossRefGoogle Scholar
  28. Gisi U, Walder F, Resheat-Eini Z, Edel D, Sierotzki H (2011) Changes of genotype, sensitivity and aggressiveness in Phytophthora infestans isolates collected in European countries in 1997, 2006 and 2007. J Phytopathol 159:223–232CrossRefGoogle Scholar
  29. González-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, Jones JD (2006) The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18:1067–1083PubMedCrossRefGoogle Scholar
  30. Grenville-Briggs LJ, Anderson VL, Fugelstad J, Avrova AO, Bouzenzana J, Williams A, Wawra S, Whisson SC, Birch PR, Bulone V, van West P (2008) Cellulose synthesis in Phytophthora infestans is required for normal appressorium formation and successful infection of potato. Plant Cell 20:720–738PubMedCrossRefGoogle Scholar
  31. Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grunwald NJ, Horn K, Horner NR, Hu C-H, Huitema E, Jeong D-H, Jones AME, Jones JDG, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzon A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJI, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PRJ, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398PubMedCrossRefGoogle Scholar
  32. Halterman DA, Chen Y, Sopee J, Berduo-Sandoval J, Sanchez-Perez A (2010) Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PLoS One 5:e10536. doi: 10.1371/journal.pone.0010536 PubMedCrossRefGoogle Scholar
  33. Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Visser RGF, van der Vossen EAG (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57CrossRefGoogle Scholar
  34. Hein I, Birch PRJ, Danan S, Lefebvre V, Odeny DA, Genhardt C, Trognitz F, Bryan G (2009a) Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Res 52:215–227CrossRefGoogle Scholar
  35. Hein I, Gilroy EM, Armstrong MR, Birch PRJ (2009b) The zig-zag-zig in oomycete–plant interactions. Mol Plant Pathol 10:547–562PubMedCrossRefGoogle Scholar
  36. Hohl HR, Suter E (1976) Host–parasite interfaces in a resistant and a susceptible cultivar of Solanum tuberosum inoculated with Phytophthora infestans: leaf tissue. Can J Bot 54:1956–1970CrossRefGoogle Scholar
  37. Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261PubMedCrossRefGoogle Scholar
  38. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  39. Judelson HS, Ah-Fong AM, Aux G, Avrova AO, Bruce C, Cakir C, da Cunha L, Grenville-Briggs L, Latijnhouwers M, Ligterink W, Meijer HJ, Roberts S, Thurber CS, Whisson SC, Birch PR, Govers F, Kamoun S, van West P, Windass J (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21:433–447PubMedCrossRefGoogle Scholar
  40. Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295PubMedCrossRefGoogle Scholar
  41. Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, Maclean D, Jones JD (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094. doi: 10.1371/journal.pbio.1001094 PubMedCrossRefGoogle Scholar
  42. Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Kuang H, Rietman H, Bergervoet M, Vleeshouwers V, van der Vossen EA, Qu D, Visser R, Jacobsen E, Vossen J (2011) Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant Microbe Interact. doi: 10.1094/MPMI-11-10-0276
  43. Lokossou AA, Park TH, van Arkel G, Arens M, Ruyter-Spira C, Morales J, Whisson SC, Birch PRJ, Visser RG, Jacobsen E, van der Vossen EA (2009) Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant Microbe Interact 22:630–641PubMedCrossRefGoogle Scholar
  44. Morgan W, Kamoun S (2007) RXLR effectors of plant pathogenic oomycetes. Curr Opin Microbiol 10:332–338PubMedCrossRefGoogle Scholar
  45. Oh S-K, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JIB, Liu H-Y, van Damme M, Morgan W, Choi D, van der Vossen E, Vleeshouwers V, Kamoun S (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928–2947PubMedCrossRefGoogle Scholar
  46. Pel MA (2010) Mapping, isolation and characterization of genes responsible for late blight resistance in potato. Ph.D. thesis, Wageningen University, the Netherlands. ISBN 978-90-8585-636-8Google Scholar
  47. Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD, Tyler BM, Gijzen M (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS One 4:e5066. doi: 10.1371/journal.pone.0005066 PubMedCrossRefGoogle Scholar
  48. Raffaele S, Win J, Cano L, Kamoun S (2010) Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 11:637. doi: 10.1186/1471-2164-11-637 PubMedCrossRefGoogle Scholar
  49. Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Fong AM, Gates K, Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto-Alalibo T, Zhang M, Zheng L, Mueller E, Windass J, Binder A, Birch PR, Gisi U, Govers F, Gow NA, Mauch F, van West P, Waugh ME, Yu J, Boller T, Kamoun S, Lam ST, Judelson HS (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Interact 18:229–243PubMedCrossRefGoogle Scholar
  50. Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR, Whisson SC, Kamoun S, Tyler BM, Birch PRJ, Beynon JL (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839–1850PubMedCrossRefGoogle Scholar
  51. Rico A, McCraw SL, Preston GM (2011) The metabolic interface between Pseudomonas syringae and plant cells. Curr Opin Microbiol 14:31–38PubMedCrossRefGoogle Scholar
  52. Rietman H, Champouret N, Hein I, Niks RE, Vleeshouwers VGAA (2010) Plants and oomycetes, an intimate relationship: co-evolutionary principles and impact on agricultural practice CAB Reviews. Perspect Agric Vet Sci Nutr Nat Resour 5:1–17. doi: 10.1079/PAVSNNR20105058 Google Scholar
  53. Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, Van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10:795–803PubMedCrossRefGoogle Scholar
  54. Schornack S, van Damme M, Bozkurt TO, Cano LM, Smoker M, Thines M, Gaulin E, Kamoun S, Huitema E (2010) Ancient class of translocated oomycete effectors targets the host nucleus. Proc Natl Acad Sci USA 107:17421–17426PubMedCrossRefGoogle Scholar
  55. Shan W, Cao M, Leung D, Tyler BM (2004) The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant Microbe Interact 17:394–403PubMedCrossRefGoogle Scholar
  56. Stuttmann J, Hubberten HM, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE (2011) Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. Plant Cell 23:2788–2803PubMedCrossRefGoogle Scholar
  57. Tian M, Huitema E, Cunha L, Torto-Alalibo T, Kamoun S (2004) A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 279:26370–26377PubMedCrossRefGoogle Scholar
  58. Tian M, Benedetti B, Kamoun S (2005) A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138:1785–1793PubMedCrossRefGoogle Scholar
  59. Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S (2007) A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–377PubMedCrossRefGoogle Scholar
  60. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13:1675–1685PubMedCrossRefGoogle Scholar
  61. van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, van den Ackerveken G (2009) Downy mildew resistance in Arabidopsis by mutation of homoserine kinase. Plant Cell 21:2179–2189PubMedCrossRefGoogle Scholar
  62. van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefGoogle Scholar
  63. van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222PubMedCrossRefGoogle Scholar
  64. van Poppel PMJA (2009) The Phytophthora infestans avirulence gene PiAvr4 and its potato counterpart R4. Ph.D. thesis, Wageningen University, Wageningen, the Netherlands. ISBN 978-90-85858-306-0Google Scholar
  65. van Poppel PMJA, Guo J, van de Vondervoort PJI, Jung MWM, Birch PRJ, Whisson SC, Govers F (2008) The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. Mol Plant Microbe Interact 21:1460–1470PubMedCrossRefGoogle Scholar
  66. Vetukuri RR, Tian Z, Avrova AO, Savenkov EI, Dixelius C, Whisson SC (2011) Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biol. doi: 10.1016/j.funbio.2011.08.007
  67. Vleeshouwers VG, Driesprong JD, Kamphuis LG, Torto-Alalibo T, Van’t Slot KA, Govers F, Visser RG, Jacobsen E, Kamoun S (2006) Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Mol Plant Pathol 7:499–510PubMedCrossRefGoogle Scholar
  68. Vleeshouwers VG, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RG, Jacobsen E, Govers F, Kamoun S, Van der Vossen EA (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3:e2875. doi: 10.1371/journal.pone.0002875 PubMedCrossRefGoogle Scholar
  69. Whisson SC, Avrova AO, Van West P, Jones JT (2005) A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 6:153–163PubMedCrossRefGoogle Scholar
  70. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118PubMedCrossRefGoogle Scholar
  71. Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19:2349–2369PubMedCrossRefGoogle Scholar
  72. Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z (2007) Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J 52:1066–1079PubMedCrossRefGoogle Scholar

Copyright information

© EAPR 2011

Authors and Affiliations

  • S. C. Whisson
    • 1
  • A. O. Avrova
    • 1
  • P. C. Boevink
    • 1
  • M. R. Armstrong
    • 2
  • Z. A. Seman
    • 1
  • I. Hein
    • 1
  • P. R. J. Birch
    • 2
  1. 1.Cell and Molecular SciencesThe James Hutton InstituteDundeeUK
  2. 2.Division of Plant Sciences, College of Life SciencesUniversity of Dundee at JHIDundeeUK

Personalised recommendations