Skip to main content

Advertisement

Log in

Mathematical Model of Chronic Dermal Wounds in Diabetes and Obesity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

A Correction to this article was published on 07 January 2021

This article has been updated

Abstract

Chronic dermal-wound patients frequently suffer from diabetes type 2 and obesity; without treatment or early intervention, these patients are at risk of amputation. In this paper, we identified four factors that impair wound healing in these populations: excessive production of glycation, excessive production of leukotrient, decreased production of stromal derived factor (SDF-1), and insulin resistance. We developed a mathematical model of wound healing that includes these factors. The model consists of a system of partial differential equations, and it demonstrates how these four factors impair the closure of the wound, by reducing the oxygen flow into the wound area and by blocking the transition from pro-inflammatory macrophages to anti-inflammatory macrophages. The model is used to assess treatment by insulin injection and by oxygen infusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 07 January 2021

    We apologize for the error in the figure.

References

  • Abdelkader DH, Tambuwala MM, Mitchell CA, Osman MA, El-Gizawy SA, Faheem AM, El-Tanani M, McCarron PA (2018) Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hidrogels. Drug Del Transl Res 8(5):1053–1065

    Article  Google Scholar 

  • Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Cote D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM (2007) Mechanisms of regulation ofcxcr4/sdf-1 (cxcl12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717

    Article  Google Scholar 

  • American Diabetes Association, Statistics about diabetes, www.diabetes.org (1995–2019)

  • Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factor in physiology and medicine. Genes Develop 22(10):1276–1312

    Article  Google Scholar 

  • Androjna C, Gatica JE, Belovich JM, Derwin KA (2008) Oxygen diffusion through natural extracellular matrices: implications for estimating “critical thickness” values in tendon tissue engineering. Tissue Eng Part A 14(4):559–569

    Article  Google Scholar 

  • Araki R, Tamura M, Yamasaki I (1983) The effect of intracellular oxygen concentration on lactate release, pyridine nucleotide reduction, and respiration rate in the rat cardiac tissue. Circ Res 53(4):448–455

    Article  Google Scholar 

  • Ashcroft GS, Jeong M-J, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Song X-Y, Wahl SM (2012) Tnf is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen 20(21):38–49

    Article  Google Scholar 

  • Azura Vascular Care, 25 must know statistics about amputation due to diabetes, www.azuravascularcare.com (2017)

  • Back M, Avignon A, Stanke-Labesque F, Boegner C, Attalin V, Leprieur E, Sultan A (2014) Leukotriene production is increased in abdominal obesity. PLoS ONE 9(12):1–11

    Article  Google Scholar 

  • Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surgical Res 153(2):347–358

    Article  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Article  Google Scholar 

  • Beard DA (2006) Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism. PLoS Comput Biol 2(9):e107

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2012) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  Google Scholar 

  • Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW (2011) Inhibition of sdf-1\(\alpha \) further impairs diabetic wound healing. J Vasc Surg 53(3):774–784

    Article  Google Scholar 

  • Bianchi A, Painter KJ, Sherratt JA (2015) A mathematical model for lymphangiogenesis in normal and diabetic wounds. J Theor Biol 383:61–86

    Article  MathSciNet  MATH  Google Scholar 

  • Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA (2017) Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol 199:17–24

    Article  Google Scholar 

  • Boron WF, Boulpaep EL (2012) Medical physiology: a cellular and molecular approach, 2nd edn. Sounders, Elsevier

    Google Scholar 

  • Bourne WM (2003) Biology of the corneal endothelium in health and disease. Eye 17:912–918

    Article  Google Scholar 

  • Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol Mini-Rev 178(1):19–25

    Article  Google Scholar 

  • Bray MA (1983) The pharmacology and pathophysiology of leukotriene b4. British Med Bull 39(3):249–254

    Article  Google Scholar 

  • Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219–1222

    Article  Google Scholar 

  • Byrne H, Chaplain M, Evans D, Hopkinson I (2000) Mathematical modelling of angiogenesis in wound healing: comparison of theory and experiment. Comput Math Methods Med 2(3):175–197

    MATH  Google Scholar 

  • Chen YL, Qiao YC, Xu Y, Ling W, Pan YH, Huang YC, Geng LJ, Zhao HL, Zhang XX (2017) Serum tnf-\(\alpha \) concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis. Immunol Lett 186:52–58

    Article  Google Scholar 

  • Cohen I K, Die-gelmann R F, Lindblad W J (1992) Wound healing: biochemical & clinical apects. Plastic Reconstruct Surgery 90(5):926

    Article  Google Scholar 

  • Czarkowska-Paczek B, Bartlomiejczyk I (2006) The serum levels of growth factors: Pdgf, tgf-beta. J Physiol Pharmacol 57(2):189–197

    Google Scholar 

  • D’Acunto B (2004) Computational methods for pde in mechanics, series on advances in mathematics for applied sciences. World Scientific 67:

  • de Oliveira Gonzalez A C, Costa T F, Meldrado A R A P (2016) Wound healing—a literature review. An Bras Dermatol 91(5):614–620

    Article  Google Scholar 

  • Derakhshan R, Arababadi MK, Ahmadi Z, Karimabad MN, Salehabadi VA, Abedinzadeh M, Khorramdelazad H, Balaei P, Kennedy D, Hassanshahi G (2012) Increased circulating levels of sdf-1 (cxcl12) in type 2 diabetic patients are correlated to disease state but are unrelated to polymorphism of the sdf-1 gene in the iranian population. Inflammation 35(3):900–904

    Article  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9(1):283–289

    Article  Google Scholar 

  • Erben RG, Odorfer KI, Siebenhutter M, Weber K, Rohleder S (2008) Histological assessment of cellular half-life in tissues in vivo. Histochem Cell Biol 130:1041–1046

    Article  Google Scholar 

  • Ferrante CJ, Leibovich SJ (2012) Regulation of macrophage polarization and wound healing. Adv Wound Care 1(1):10–16

    Article  Google Scholar 

  • Finley SD, Engel-Stefanini AO, Imoukhuede P, Popel AS (2011) Pharmacokinetics and pharmacodynamics of vegf-neutralizing antibodies. BMC Syst Biol 5(193):1–20

    Google Scholar 

  • Ford RM, Lauffenburger DA (1991) Measurement of bacterail random motility and chemotaxis coefficients: Ii. application of single-cell-based mathematical model. Biotech Bioeng 37:661–672

    Article  Google Scholar 

  • CMSI Fuentes-Calvo, Atlas of genetics and cytogenetics in oncology and haematology. http://atlasgeneticsoncology.org/

  • Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC (2007) Diabetic impairments in no-mediated endothelial progenitor cell mobilization and horning are reversed by hyperoxia and sdf-1\(\alpha \). J Clin Invest 117(5):1249–1259

    Article  Google Scholar 

  • Gay CG, Winkles JA (1991) The half-lives of platelet-derived growth factor a-and b-chain mrnas are similar in endothelial cells and unaffected by heparin-binding growth factor-1 or cycloheximide. J Cell Physiol 147(1):121–127

    Article  Google Scholar 

  • Goldberg SR, Diegelmann RF (2010) Wound healing primer. Surg Clin N Ann 90:1133–1146

    Article  Google Scholar 

  • Gong D, Shi W, Yi S-J, Chen H, Groffen J, Heisterkamp N (2012) Tgf\(\beta \) signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13(31):351–361

    Google Scholar 

  • Guo Y, Lin C, Xu P, Fu X, Xia W, Yao M (2016) Ages induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to m1 in diabetes. Sci Rep 6:36416

    Article  Google Scholar 

  • Hales CM, Carroll MD, Fryar CD, Ogden CL (2017) Prevalence of obesity among adults and youth: United states, 2015–2016. NCHS Data Brief 288:1–8

    Google Scholar 

  • Hamilton (2013) Type 2 diabetes and obesity: Twin epidemics. Am. Soc. Metabolic Bariatrix Surgery – Fact Sheet, 1–5

  • Hao W, Crouser ED, Friedman A (2014) Mathematical model of sarcoidosis. PNAS 111(45):16065–16070

    Article  MathSciNet  MATH  Google Scholar 

  • Hesketh M, Sahin KB, West ZE, Murray RZ (2017) Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci, vol 18

  • Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E, PhosphoSitePlus (2014) Mutations, PTMs and recalibrations. Nucleic Acids Res 43(2015):D512–D520

    Google Scholar 

  • Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5(514):1–22

    Google Scholar 

  • Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care 3(10):647–661

    Article  Google Scholar 

  • Kaminska B, Wesolowska A, Danilkiewicz M (2005) Tgf beta signaling and its role in tumour pathogenesis. Acta Biochim Pol 52(2):329–337

    Article  Google Scholar 

  • Kim JA, Ko JH, Ko AY, Lee HJ, Kim MK, Wee WR, Lee RH, Fulcher SF, Oh JY (2014) Tsg-6 protects corneal endothelium form transcorneal cryoinjury in rabbits. Invest Ophthalmol Visual Sci 55:4905–4912

    Article  Google Scholar 

  • Kirkpatrick B, Nguyen L, Kondrikova G, Herberg S, Hill WD (2010) Stability of human stromal-derived factor-1 alpha (cxcl12alpha) after blood sampling. Ann Clin Lab Sci 40(3):257–260

    Google Scholar 

  • Kirschner DE, Uncertainty and sensitivity functions and implementation, source code, University of Michigan. http://malthus.micro.med.umich.edu/lab/usadata/, 2007–2008

  • Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM (2014) A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2:206–210

    Article  Google Scholar 

  • Krzysczyk P, Schloss R, Palmer A, Berthiaume F (2018) The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 9:419

    Article  Google Scholar 

  • Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O, Johnson A, Chung H, Maris M, Ofrecio JM, Taguchi S, Lu M, Olefsky JM (2015) Ltb4 causes macrophage-mediated inflammation and directly induces insulin resitance in obesity. Nat Med 21(3):239–247

    Article  Google Scholar 

  • Liao KL, Bai XF, Friedman A (2014) Mathematical modeling of interleukin-27 induction of anti-tumor T cells response. PLoS ONE 9(3):e91844

    Article  Google Scholar 

  • Manrique C, Lastra G, Sowers JR (2014) New insights into insulin action and resistance in the vasculature. Ann NY Acad Sci 1311:138–150

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196

    Article  MathSciNet  MATH  Google Scholar 

  • Miller CC, Godeau G, Lebreton-DeCoster C, Desmoulière A, Pellat B, Dubertret L, Coulomb B (2003) Validation of a morphometric method for evaluating fibroblast numbers in normal and pathologic tissues. Exp Dermatol 12(4):403–11

    Article  Google Scholar 

  • Mothe-Satney I, Filoux C, Amghar H, Pons C, Boulier V, Galitzky J, Grimaldi PA, Feral CC, Bouloumie A, Obberghen EV, Neels JG (2012) Adipocytes secrete leukotrienes. Diabetes 61(9):2311–2319

    Article  Google Scholar 

  • Mouton AJ, Deleon-Pennell KY, Gonzales OJ, Flynn ER, Freeman TC, Saucerman FJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML (2018) Mapping macrophage polarization over the myocardial infarcation time continuum. Basic Res Cardiol 113(4):26

    Article  Google Scholar 

  • Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14(1):5–12

    Article  Google Scholar 

  • Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, Wu AR, Churchman LS, Singh A, Raj A (2015) Single mammalian cells compensate for differences in cellular volume and dna copy number through independent global transcriptional mechanisms. Mol Cell 58(2):339–352

    Article  Google Scholar 

  • Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care 2(5):215

    Article  Google Scholar 

  • Pettet G, Byrne H, McElwain D, Norbury J (1996) A model of wound-healing angiogenesis in soft tissue. Math Biosci 136(1):35–63

    Article  MATH  Google Scholar 

  • Pettet G, Chaplain MA, McElwain D, Byrne H (1996) On the role of angiogenesis in wound healing. Proc R Soc Lond B 263(1376):1487–1493

    Article  Google Scholar 

  • Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (1991) Role of platelet-derived growth factor in wound healing. J Cell Biochem 45(4):319–326

    Article  Google Scholar 

  • PROSPEC: Protein Specialists, Pdgf bb human. https://www.prospecbio.com/pdgf-bb_human

  • PubChem, Compound summary: Leukotriene b4. https://pubchem.ncbi.nlm.nih.gov/compound/leukotriene_b4PubChem CID 5280492

  • Qiao Y-C, Chen Y-L, Pan Y-H, Ling W, Tian F, Zhang X-X, Zhao H-L (2017) Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy. Medicine 96(15):1–11

    Article  Google Scholar 

  • Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Gharios GB, Black CM, Abraham DJ (2006) Platelt-derived frogth factor-\(\beta \) receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169(6):2254–2265

    Article  Google Scholar 

  • R&D Systems, Cxcl12/sdf-1 (pbsf), R&D Systems: a bio-techne brand. https://www.rndsystems.com/research--area/cxcl12--sdf--1--pbsf

  • R&D Systems (2003) Interleukin-10 (IL-10) Family, Article, R&D Systems—a bio-techne brand, May 1, First Published in R&D Systems 2003 Catalog

  • Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-bb promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater 7(1):133–143

    Article  Google Scholar 

  • Schlingemann RO, van Noorden CJF, Diekman MJM, Tiller A, Meijers JCM, Koolwijk P, Wiersinga WM (2013) Vegf levels in plasma in relation to platelet activation, glycemic control, and microvascular complications in type 1 diabetes. Diabetes Care 36:1629–1634

    Article  Google Scholar 

  • Segal MS, Shah R, AFzal A, Perrault CM, Chang K, Schuler A, Beem E, Shaw LC, Clazi SL, Harrison JK, Tran-Son-Tay R, Grant MB (2006) Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes 55(1):102–109

    Article  Google Scholar 

  • Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771

    Article  Google Scholar 

  • Shima DT, Deutsch U, D’Amore PA (1995) Hypoxic induction of vascular endothelial growth factor (vegf) in human epithelial cells is mediated by increases in mrna stability. FEBS Lett 370(3):203–208

    Article  Google Scholar 

  • Shindo K, Miyakawa K, Fukumura M (1993) Plasma levels of leukotriene b4 in asthmatic patients. Int J Tissue React 15(5):181–184

    Google Scholar 

  • Shugart RC, Friedman A, Zhao R, Sen CK (2008) Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc Nat Acad Sci 105(7):2628–2633

    Article  Google Scholar 

  • Simo R, Barbosa-Desongles A, Lecube A, Hernandez C, Selva DM (2012) Potential role of tumor necrosis factor-\(\alpha \) in downregulating sex hormone-binding globulin. Diabetes 61:372–382

    Article  Google Scholar 

  • Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Phys Pharmacol 18:1–14

    Article  Google Scholar 

  • Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. implications for the syndrome of insulin resistance. J Clin Invest 97(11):2601–2610

    Article  Google Scholar 

  • Stuermer EK, Lipensky A, Thamm O, Neugebauer E, Schaefer N, Fuchs P, Bouillon B, Koenen P (2015) The role of sdf-1 in homing of human adipose-derived stem cells. Wound Repair Regen 23(1):82–89

    Article  Google Scholar 

  • Talahalli R, Zarini S, Sheibani N, Murphy RC, Gubitosi-Klug RA (2010) Increased synthesis of leukotrienes in the mouse model of diabetic retinopathy. IOVS 51(3):1699–1708

    Google Scholar 

  • Tong PL, Roediger B, Kolesnikoff N, Biro M, Tay SS, Jain R, Shaw LE, Grimbaldeston MA, Weninger W (2015) The skin immune atlas: three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. J Invest Dermatol 135(1):84–93

    Article  Google Scholar 

  • Troester MA, Lindstrom AB, Kupper LL, Waidyanatha S, Rappaport SM (2000) Stability of hemoglobin and albumin adducts of benzene oxide and 1,4-benzoquinone after administration of benzene to f344 rats. Toxicol Sci 54(1):88–94

    Article  Google Scholar 

  • Wang Z, Filgueiras L, Wang S, Serezani APM, Peters-Golden M, Jancar S, Serezani CH (2014) Leukotriene b4 enhances the generation of pro-inflammatory micrornas to promote myd88-dependent macrophage activation. J Immunol 192(5):2349–2356

    Article  Google Scholar 

  • Waugh HV, Sherratt JA (2006) Macrophage dynamics in diabetic wound healing. Bull Math Biol 68:197–207

    Article  MathSciNet  MATH  Google Scholar 

  • WinVivo, Chronic wounds, WinVivo Corporation www.winvivo.com (2009–2014)

  • Wu X, Gowda NM, Gowda DC (2015) Phagosomal acidification prevents macrophage inflamatory cytokine production to malaria and DCs are the major source at the early stages of infection: implication for malaria protective immunity development. J Biol Chem 6:23135–23147

    Article  Google Scholar 

  • Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462

    Article  Google Scholar 

  • Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc Nat Acad Sci 106:16782–16787

    Article  Google Scholar 

  • Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care 4(3):119–136

    Article  Google Scholar 

  • Yeboah J, Sane DC, Crouse JR, Herrington DM, Bowden DW (2007) Low plasma levels of fgf-2 and pdgf-bb are associated with cardiovascular events in type ii diabetes mellitus. Disease Markers 23:173–178

    Article  Google Scholar 

  • Young ME (1980) Estimation of diffusion coefficients of proteins. Biotech Bioeng XXI I:947–955

    Article  Google Scholar 

  • Yu T, Gao M, Yang P, Pei Q, Liu D, Wang D, Zhang X, Liu Y (2017) Topical insulin accelerates cutaneous wound healing in insulin-resistant diabetic rats. Am J Transl Res 9(10):4682–4693

    Google Scholar 

  • Zhang Z, Lv L (2016) Effect of local insulin injection on wound vascularization in patients with diabetic foot ulcer. Exp Therap Med 11:397–402

    Article  Google Scholar 

  • Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R (2000) Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type ii-like db/db mice. Diabetes 49(9):1451–1458

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Mathematical Biosciences Institute of The Ohio State University. This work was conducted while Nourridine Siewe was a Postdoctoral Fellow at the University of British Columbia, Okanagan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nourridine Siewe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, A., Siewe, N. Mathematical Model of Chronic Dermal Wounds in Diabetes and Obesity. Bull Math Biol 82, 137 (2020). https://doi.org/10.1007/s11538-020-00815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00815-x

Keywords

Navigation