A Stochastic Model of DNA Double-Strand Breaks Repair Throughout the Cell Cycle

  • Fazeleh S. Mohseni-Salehi
  • Fatemeh Zare-MirakabadEmail author
  • Mehdi Sadeghi
  • Soudeh Ghafouri-Fard
Original Article


Cell cycle phase is a decisive factor in determining the repair pathway of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ) or homologous recombination (HR). Recent experimental studies revealed that 53BP1 and BRCA1 are the key mediators of the DNA damage response (DDR) with antagonizing roles in choosing the appropriate DSB repair pathway in G1, S, and G2 phases. Here, we present a stochastic model of biochemical kinetics involved in detecting and repairing DNA DSBs induced by ionizing radiation during the cell cycle progression. A three-dimensional stochastic process is defined to monitor the cell cycle phase and DSBs repair at times after irradiation. To estimate the model parameters, a Metropolis Monte Carlo method is applied to perform maximum likelihood estimation utilizing the kinetics of γ-H2AX and RAD51 foci formation in G1, S, and G2 phases. The recruitment of DSB repair proteins is verified by comparing our model predictions with the corresponding experimental data on human cells after exposure to X and γ-radiation. Furthermore, the interaction between 53BP1 and BRCA1 is simulated for G1 and S/G2 phases determining the competition between NHEJ and HR pathways in repairing induced DSBs throughout the cell cycle. In accordance with recent biological data, the numerical results demonstrate that the maximum proportion of HR occurs in S phase cells and the high level of NHEJ takes place in G1 and G2 phases. Moreover, the stochastic realizations of the total yield of simple and complex DSBs ligation are compared for G1 and S/G2 damaged cells. Finally, the proposed stochastic model is validated when DSBs induced by different particle radiation such as iron, silicon, oxygen, proton, and carbon.


DSB repair pathways Cell cycle phase Markov chain model DSB complexity Particle radiation 


Supplementary material

11538_2019_692_MOESM1_ESM.eps (35 kb)
Supplementary material 1 (EPS 34 kb)
11538_2019_692_MOESM2_ESM.eps (66 kb)
Supplementary material 2 (EPS 66 kb)


  1. Aparicio T, Baer R, Gautier J (2014) DNA double-strand break repair pathway choice and cancer. DNA Repair 19:169–175CrossRefGoogle Scholar
  2. Asaithamby A, Chen DJ (2009) Cellular responses to DNA double-strand breaks after low-dose γ-irradiation. Nucleic Acids Res 37(12):3912–3923CrossRefGoogle Scholar
  3. Asaithamby A, Uematsu N, Chatterjee A, Story MD, Burma S, Chen DJ (2008) Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Radiat Res 169(4):437–446CrossRefGoogle Scholar
  4. Bee L, Fabris S, Cherubini R, Mognato M, Celotti L (2013) The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression. PLoS ONE 8(7):e69061CrossRefGoogle Scholar
  5. Belov OV, Krasavin EA, Lyashko MS, Batmunkh M, Sweilam NH (2015) A quantitative model of the major pathways for radiation-induced DNA double-strand break repair. J Theor Biol 366:115–130MathSciNetzbMATHCrossRefGoogle Scholar
  6. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28(21):3413–3427CrossRefGoogle Scholar
  7. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297CrossRefGoogle Scholar
  8. Brzostek A, Szulc I, Klink M, Brzezinska M, Sulowska Z, Dziadek J (2014) Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS ONE 9:e92799CrossRefGoogle Scholar
  9. Cucinotta FA, Pluth JM, Anderson JA, Harper JV, O’Neill P (2008) Biochemical kinetics model of DSB repair and induction of Î3-H2AX foci by non-homologous end joining. Radiat Res 169:214–222CrossRefGoogle Scholar
  10. Daley JM, Sung P (2013) RIF1 in DNA break repair pathway choice. Mol Cell 49(5):840–841CrossRefGoogle Scholar
  11. Daley JM, Sung P (2014) 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 34(8):1380–1388CrossRefGoogle Scholar
  12. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J et al (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49(5):872–883CrossRefGoogle Scholar
  13. Feng L, Li N, Li Y, Wang J, Gao M, Wang W, Chen J (2015) Cell cycle-dependent inhibition of 53BP1 signaling by BRCA1. Cell Discov 1:15019CrossRefGoogle Scholar
  14. Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663CrossRefGoogle Scholar
  15. Fowler TL, Bailey AM, Bednarz BP, Kimple RJ (2014) High-throughput detection of DNA double-strand breaks using image cytometry. Biotechniques 58(1):37Google Scholar
  16. Guo X, Bai Y, Zhao M, Zhou M, Shen Q, Yun CH, Zhang H, Zhu WG, Wang J (2017) Acetylation of 53BP1 dictates the DNA double strand break repair pathway. Nucleic Acids Res 46(2):689–703CrossRefGoogle Scholar
  17. Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK (2013) Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res 181(1):1–8CrossRefGoogle Scholar
  18. Gupta A, Hunt CR, Hegde ML, Chakraborty S, Udayakumar D, Horikoshi N, Singh M, Ramnarain DB, Hittelman WN, Namjoshi S, Asaithamby A (2014) MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep 8(1):177–189CrossRefGoogle Scholar
  19. Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA (2012) Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 327(1):123–133CrossRefGoogle Scholar
  20. Iwamoto K, Hamada H, Eguchi Y, Okamoto M (2014) Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. PLoS ONE 9:e101333CrossRefGoogle Scholar
  21. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071CrossRefGoogle Scholar
  22. Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Brit J Radiol 87(1035):20130685CrossRefGoogle Scholar
  23. Karanam K, Kafri R, Loewer A, Lahav G (2012) Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol Cell 47(2):320–329CrossRefGoogle Scholar
  24. Khalil H, Tummala H, Zhelev N (2012) ATM in focus: a damage sensor and cancer target. Biodiscovery 5:1Google Scholar
  25. Koury E, Harrell K, Smolikove S (2017) Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation. Nucleic Acids Res 46(2):748–764CrossRefGoogle Scholar
  26. Kurosawa A, Saito S, So S, Hashimoto M, Iwabuchi K, Watabe H et al (2013) DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair. PLoS ONE 8:e72253CrossRefGoogle Scholar
  27. Li Y, Cucinotta FA (2011) Modeling non-homologous end joining. J Theor Biol 283:122–135MathSciNetzbMATHCrossRefGoogle Scholar
  28. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99CrossRefGoogle Scholar
  29. Li Y, Reynolds P, O’Neill P, Cucinotta FA (2014) Modeling damage complexity-dependent non-homologous end-joining repair pathway. PLoS ONE 9:e85816CrossRefGoogle Scholar
  30. Löbrich M, Cooper PK, Rydberg B (1998) Joining of correct and incorrect DNA ends at double-strand breaks produced by high-linear energy transfer radiation in human fibroblasts. Radiat Res 150:619–626CrossRefGoogle Scholar
  31. Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA (2010) γH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9(4):662–669CrossRefGoogle Scholar
  32. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287CrossRefGoogle Scholar
  33. Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, Schettino G (2013) Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures. PLoS ONE 8(11):e79541CrossRefGoogle Scholar
  34. Mohseni-Salehi FS, Zare-Mirakabad F, Ghafouri-Fard S, Sadeghi M (2017) The effect of stochasticity on repair of DNA double strand breaks throughout non-homologous end joining pathway. Math Med Biol J IMA 35:517–539MathSciNetzbMATHCrossRefGoogle Scholar
  35. Mouri K, Nacher JC, Akutsu T (2009) A mathematical model for the detection mechanism of DNA double-strand breaks depending on autophosphorylation of ATM. PLoS ONE 4(4):e5131CrossRefGoogle Scholar
  36. Ogiwara H, Kohno T (2011) Essential factors for incompatible DNA end joining at chromosomal DNA double strand breaks in vivo. PLoS ONE 6:e28756CrossRefGoogle Scholar
  37. Plante I, Ponomarev AL, Cucinotta FA (2013) Calculation of the energy deposition in nanovolumes by protons and HZE particles: geometric patterns of initial distributions of DNA repair foci. Phys Med Biol 58(18):6393CrossRefGoogle Scholar
  38. Reid DA, Conlin MP, Yin Y, Chang HH, Watanabe G, Lieber MR, Ramsden DA, Rothenberg E (2016) Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry. Nucleic Acids Res 45(4):1872–1878CrossRefGoogle Scholar
  39. Saleh-Gohari N, Helleday T (2004) Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 32:3683–3688CrossRefGoogle Scholar
  40. Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L (2017) Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Nucleic Acids Res 45(17):10018–10031CrossRefGoogle Scholar
  41. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Löbrich M, Jeggo PA (2011) Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30(6):1079–1092CrossRefGoogle Scholar
  42. Srivastava S, Dahal S, Naidu SJ, Anand D, Gopalakrishnan V, Kooloth Valappil R, Raghavan SC (2017) DNA double-strand break repair in Penaeus monodon is predominantly dependent on homologous recombination. DNA Res 24(2):117–128Google Scholar
  43. Sung P, Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7(10):739CrossRefGoogle Scholar
  44. Taleei R (2019) Modelling DSB repair kinetics for DNA damage induced by proton and carbon ions. Radiat Prot Dosim 183:75–78CrossRefGoogle Scholar
  45. Taleei R, Nikjoo H (2013) The non-homologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks: I. A mathematical model. Radiat Res 179:530–539CrossRefGoogle Scholar
  46. Taleei R, Girard PM, Sankaranarayanan K, Nikjoo H (2013) The non-homologous end-joining (NHEJ) mathematical model for the repair of double-strand breaks: II. Application to damage induced by ultrasoft X rays and low-energy electrons. Radiat Res 179(5):540–548CrossRefGoogle Scholar
  47. Tomlin CJ, Axelrod JD (2007) Biology by numbers: mathematical modelling in developmental biology. Nat Rev Genet 8(5):331CrossRefGoogle Scholar
  48. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22(20):5612–5621CrossRefGoogle Scholar
  49. West RB, Yaneva M, Lieber MR (1998) Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol 18:5908–5920CrossRefGoogle Scholar
  50. Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T et al (2016) A cell cycle-dependent BRCA1–UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun 7:10201CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2020

Authors and Affiliations

  • Fazeleh S. Mohseni-Salehi
    • 1
  • Fatemeh Zare-Mirakabad
    • 1
    Email author
  • Mehdi Sadeghi
    • 2
    • 3
  • Soudeh Ghafouri-Fard
    • 4
  1. 1.Mathematics and Computer Science DepartmentAmirkabir University of Technology (Tehran Polytechinc)TehranIran
  2. 2.School of Biological ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.National Institute of Genetic Engineering and BiotechnologyTehranIran
  4. 4.Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations