Overcoming Drug Resistance to BRAF Inhibitor

  • Avner Friedman
  • Nourridine SieweEmail author
Original Article


One of the most frequently found mutations in human melanomas is in the B-raf gene, making its protein BRAF a key target for therapy. However, in patients treated with BRAF inhibitor (BRAFi), although the response is very good at first, relapse occurs within 6 months, on the average. In order to overcome this drug resistance to BRAFi, various combinations of BRAFi with other drugs have been explored, and some are being applied clinically, such as a combination of BRAF and MEK inhibitors. Experimental data for melanoma in mice show that under continuous treatment with BRAFi, the pro-cancer MDSCs and chemokine CCL2 initially decrease but eventually increase to above their original level, while the anticancer T cells continuously decrease. In this paper, we develop a mathematical model that explains these experimental results. The model is used to explore the efficacy of combinations of BRAFi with anti-CCL2, anti-PD-1 and anti-CTLA-4, with the aim of eliminating or reducing drug resistance to BRAFi.


Metastatic melanoma cancer Checkpoint inhibitors BRAF inhibitor resistance 



  1. Abcam (1998–2019) Anti-MCP1 antibody (ab9669).
  2. Abcam (1998–2019) Anti-PD1 antibody (ab89828).
  3. Abcam (1998–2019) Recombinant Anti-CTLA4 antibody [EPR1476] (ab134090).
  4. Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M et al (2012) The role of BRAF v600 mutation in melanoma. J Transl Med 10(85):1–9Google Scholar
  5. Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Oncologist 21(4):687–692Google Scholar
  6. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175CrossRefGoogle Scholar
  7. Butte MJ, Pena-Cruz V, Kim MJ, Freeman GJ, Sharpe AH (2008) Interaction of human PD-L1 and B7–1. Mol Immunol 45(13):3567–3572CrossRefGoogle Scholar
  8. Chang C, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer research 61(3):1100–1106 Google Scholar
  9. Chen D, Roda JM, Marsh CB, Eubank TD, Friedman A (2012) Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull Math Biol 74(11):2752–2777MathSciNetzbMATHGoogle Scholar
  10. Cree IA, Charlton P (2017) Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17(10):1–8Google Scholar
  11. D’Acunto B (2004) Computational methods for PDE in mechanics, series on advances in mathematics for applied sciences. World Scientific, Singapore, p 67CrossRefGoogle Scholar
  12. Díaz-Martinez M, Benito-Jardon L, Teixido J (2018) New insights in melanoma resistance to BRAF inhibitors: a role for microRNAs. Oncotarget 9(83):35374–35375CrossRefGoogle Scholar
  13. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-Cell rejection function in tumors. Cancer Res 73(12):3591–3603CrossRefGoogle Scholar
  14. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F (2018) Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 9(14):1–14Google Scholar
  15. Eubank TD, Roberts RD, Khan M, Curry JM, Nuovo GJ, Kuppusamy P et al (2009) Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res 69(5):2133–2140CrossRefGoogle Scholar
  16. For Biotechnology Information NNC. Artesunate. Open Chem Database (2018);65664. Accessed 30 Mar 2019
  17. Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR et al (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19(5):1225–1231CrossRefGoogle Scholar
  18. Friedman A, Hao W (2018) The role of exosomes in pancreatic cancer microenvironment. Bull Math Biol 80(5):1111–1133MathSciNetzbMATHCrossRefGoogle Scholar
  19. Gaffney EA (2004) The application of mathematical modelling to aspects of adjuvant chemotherapy scheduling. J Math Biol 48(4):375–422MathSciNetzbMATHCrossRefGoogle Scholar
  20. Gehad A, Lichtman M, Schmults C, Teague JE, Calarese A, Jiang Y et al (2012) Nitric oxide–producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomas. J Investig Dermatol 132(11):2642–2651CrossRefGoogle Scholar
  21. Gillet JP, Gottesman MM (2009) Mechanisms of multidrug resistance in cancer. Meth Mol Biol Multi-Drug Res Cancer 596:47–76Google Scholar
  22. Hagen B, Trinh VA (2014) Managing side effects of vemurafenib therapy for advanced melanoma. J Adv Pract Oncol 5:400–410Google Scholar
  23. Hao W, Crouser ED, Friedman A (2014) Mathematical model of sarcoidosis. PNAS 111(45):16065–16070MathSciNetzbMATHCrossRefGoogle Scholar
  24. Hao W, Schlesinger LS, Friedman A (2016) Modeling granuloma in response to infection in the lung. PLoS ONE 11(3):1–26Google Scholar
  25. Hao W, Komar HM, Hart PA, Conwell DL, Lesinski GB, Friedman A (2017) Mathematical model of chronic pancreatitis. PNAS 114(19):5011–5016MathSciNetzbMATHCrossRefGoogle Scholar
  26. Harpaz Y, Gerstein M, Chothia C (1994) Volume changes on protein folding. Structure 2(7):641–649CrossRefGoogle Scholar
  27. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520CrossRefGoogle Scholar
  28. Ilieva KM, Correa I, Josephs DH, Karagiannis P, Egbuniwe IU, Cafferkey MJ et al (2014) Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma. Mol Cancer Ther 13(12):2769–2783CrossRefGoogle Scholar
  29. Jafarzadeh A, Minaee K, Farsinejad A, Nemati M, Khosravimashizi A, Daneshvar H et al (2015) Evaluation of the circulating levels of IL-12 and IL-33 in patients with breast cancer: influences of the tumor stages and cytokine gene polymorphisms. Iran J Basic Med Sci 18(12):1189–1198Google Scholar
  30. Janco JMT, Lamichhane P, Karyampudi L, Knutson KL (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194(7):2985–2991CrossRefGoogle Scholar
  31. Jobe NP, Rösel D, Dvorankova B, Kodet O, Lacina L, Mateu R et al (2016) Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol 146(2):205–217CrossRefGoogle Scholar
  32. Kakadia S, Yarlagadda N, Awad R, Kundranda M, Niu J, Naraev B et al (2018) Mechanisms of resistance to BRAF and MEK inhibitors and clinical updates of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther 11:7095–7107CrossRefGoogle Scholar
  33. Kawakami Y, Yaguchi T, Sumimoto H, Kudo-Saito C, Iwata-Kajihara T, Nakamura S et al (2013) Improvement of cancer immunotherapy by combining molecular targeted therapy. Front Oncol 3(136):1–7Google Scholar
  34. Khunweeraphong N, Kuchler TSK (2017) The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Sci Rep 7(13767):1–15Google Scholar
  35. Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman A (2009) A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. J Theor Biol 260(3):359–371MathSciNetzbMATHCrossRefGoogle Scholar
  36. Kim Y, Wallace J, Li F, Ostrowski M, Friedman A (2010) Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments. J Theol Biol 61(3):401–421MathSciNetzbMATHGoogle Scholar
  37. Kirschner DE (2007–2008) Uncertainty and sensitivity functions and implementation. University of Michigan. Accessed 7 Jan 2015
  38. Knight DA, Ngiow SF, Li M, Parmenter T, Mok S, Cass A et al (2013) Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Investig 123(3):1371–1381CrossRefGoogle Scholar
  39. Kruger-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Huls C, Blankenstein T et al (1994) Expression of interleukin 10 in human melanoma. Br J Cancer 70:1182–1185CrossRefGoogle Scholar
  40. Labbe K, Danialou G, Gvozdic D, Demoule A, Divangahi M, Boyd JH et al (2010) Inhibition of monocyte chemoattractant protein-1 prevents diaphragmatic inflammation and maintains contractile function during endotoxemia. Critica Care. 14(R187):1–11Google Scholar
  41. Lai X, Friedman A (2017) Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. BMC Systs Biol 11(1):1–18CrossRefGoogle Scholar
  42. Lai X, Stiff A, Duggan M, Wesolowski R, Carson WE III, Friedman A (2018) Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. PNAS 115(21):5534–5539CrossRefGoogle Scholar
  43. Lavi O, Gottesman MM, Levy D (2012) The dynamics of drug resistance: a mathematical perspective. Drug Resist Updates 15(1–2):90–97CrossRefGoogle Scholar
  44. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424CrossRefGoogle Scholar
  45. Liao KL, Bai XF, Friedman A (2014) Mathematical modeling of interleukin-27 induction of anti-tumor T cells response. PLoS ONE 9(3):e91844CrossRefGoogle Scholar
  46. Lim S, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ (2016) Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7(19):28697–28710CrossRefGoogle Scholar
  47. Lisiero DN, Soto H, Liau LM, Prins RM (2011) Enhanced sensitivity of IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8\(^+\) T cells in a melanoma model. J Immunol 186:5068–5077CrossRefGoogle Scholar
  48. Luebker SA, Koepsell SA (2019) Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front Oncol 9(268):1–8Google Scholar
  49. Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. J Cancer 4(1):36–44CrossRefGoogle Scholar
  50. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348CrossRefGoogle Scholar
  51. Manzano JL, Layos L, Bugés C, de los Llanos Gil M, Vila L, Martínez-Cardús EMA (2016) Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med 4(12):237–246CrossRefGoogle Scholar
  52. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196MathSciNetzbMATHCrossRefGoogle Scholar
  53. Markowitz J, Wang J, Vangundy Z, You J, Yildiz V, Yu L et al (2017) Nitric oxide mediated inhibition of antigen presentation from DCs to CD4+ T cells in cancer and measurement of STAT1 nitration. Sci Rep 7(1):15424–15436CrossRefGoogle Scholar
  54. Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG et al (2015) Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA 112(47):E6506–14CrossRefGoogle Scholar
  55. Menzies AM, Long GV (2013) Recent advances in melanoma systemic therapy. BRAF inhibitors, CTLA4 antibodies and beyond. Eur J Cancer 49(15):5229–5241CrossRefGoogle Scholar
  56. Messerschmidt JL, Prendergast GC, Messerschmidt GL (2016) How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping nonimmunologists decipher recent advances. Oncologist 21(2):233–243CrossRefGoogle Scholar
  57. Muppidi MR, George S (2015) Immune checkpoint inhibitors in renal cell carcinoma. J Targeted Ther Cancer 4:47–52Google Scholar
  58. Oelkrug C, Ramage JM (2014) Enhancement of t cell recruitment and infiltration into tumours. Clin Exp Immunol 178(1):1–8CrossRefGoogle Scholar
  59. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75(4):689–713CrossRefGoogle Scholar
  60. Ott PA, Henry T, Baranda S, Frleta D, Manches O, Bogunovic D et al (2013) Inhibition of both braf and mek in BRAF(V600E) mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on dc properties. Cancer Immunol Immunother 62(4):811–822CrossRefGoogle Scholar
  61. Perrot CY, Javelaud D, Mauviel A (2013) Insights into the transforming growth factor-beta signaling pathway in cutaneous melanoma. Ann Dermatol 25(2):135–144CrossRefGoogle Scholar
  62. Reddy SM, Reuben A, Wargo JA (2016) Influences of BRAF inhibitors on the immune microenvironment and the rationale for combined molecular and immune targeted therapy. Curr Oncol Rep 18:42CrossRefGoogle Scholar
  63. Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P et al (2019) The 2019 mathematical oncology roadmap. Phys Biol 16(4):041005CrossRefGoogle Scholar
  64. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N et al (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26(5):623–637CrossRefGoogle Scholar
  65. Safarzadeh E, Hashemzadeh S, Duijf PHG, Mansoori B, Khaze V, Mohammadi A et al (2019) Circulating myeloid-derived suppressor cells: an independent prognostic factor in patients with breast cancer. J cell Physiol 234:3515–3525CrossRefGoogle Scholar
  66. Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A et al (2014) BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal 7(318):ra30CrossRefGoogle Scholar
  67. Shi L, Chen S, Yang L, Li Y (2013) The role of PD-1 and PD-L1 in T cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 6:74CrossRefGoogle Scholar
  68. Siewe N, Yakubu AA, Satoskar AR, Friedman A (2017) Granuloma formation in leishmaniasis: a mathematical model. J Theor Biol 412:48–60MathSciNetzbMATHCrossRefGoogle Scholar
  69. Steinberg SM, Shabaneh TB, Zhang P, Martyanov V, Li Z, Malik BT et al (2017) Myeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitors. Cancer Res. 77(7):1599–1610CrossRefGoogle Scholar
  70. Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B et al (2018) Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin Cancer Res 24(8):1891–1904CrossRefGoogle Scholar
  71. Sun X, Hu B (2018) Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform 19(6):1382–1399CrossRefGoogle Scholar
  72. Tsukumo S, Yasutomo K (2018) Regulation of CD8+ T cells and antitumor immunity by notch signaling. Front Immunol 9(101):1–7Google Scholar
  73. Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4(36):1–16Google Scholar
  74. Vacaflores A, Freedman SN, Chapman NM, Houtman JCD (2017) Pretreatment of activated human CD8 T cells with IL-12 leads to enhanced TCR-induced signaling and cytokine production. Mol Immunol 81:1–15CrossRefGoogle Scholar
  75. Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK (2013) Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des 19(40):7126–7140CrossRefGoogle Scholar
  76. Vanichapol T, Chutipongtanate S, Anurathapan U, Hongeng S (2018) Immune escape mechanisms and future prospects for immunotherapy in neuroblastoma. Biomed Res Int 2018:1812535CrossRefGoogle Scholar
  77. Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R et al (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 7(4):4428–4441CrossRefGoogle Scholar
  78. Vescovi R, Monti M, Moratto D, Paolini L, Consoli F, Benerini L et al (2018) Collapse of the plasmacytoid dendritic cell compartment in advanced cutaneous melanomas by components of the tumor cell secretome. Cancer Immunol Res 7(1):12–28CrossRefGoogle Scholar
  79. Villanueva J, Vultur A, Herlyn M (2011) Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer Res 73(23):7137–7140CrossRefGoogle Scholar
  80. Wang Y, Zhang X, Yang L, Xue J, Hu G (2018) Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. J Bone Oncol 11:27–32CrossRefGoogle Scholar
  81. Whiteside TL (2015) The role of regulatory T cells in cancer immunology. Immunotargets Ther 4:159–171CrossRefGoogle Scholar
  82. Wooten DJ, Quaranta V (2017) Mathematical model of cell phenotype regulation and reprogramming: make cancer cells sensitive again!. Bioch Biophys Acta (BBA)-Reviews on Cancer 1867(2):167–175CrossRefGoogle Scholar
  83. Yang SX, Wei WS, Ouyan QW, Jiang QH, Zou YF, Qu W et al (2016) Interleukin-12 activated CD8+ T cells induces apoptosis in breast cancer cells and reduces tumor growth. Biomed Pharmacother. 84:1466–1471CrossRefGoogle Scholar
  84. Young ME (1980) Estimation of diffusion coefficients of proteins. Biotech Bioeng XXII:947–955CrossRefGoogle Scholar
  85. Zahreddine H, Borden KLB (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4(28):1–8Google Scholar
  86. Zanudo JGT, Steinway SN, Albert R (2018) Discrete dynamic network modeling of oncogenic signaling: mechanistic insights for personalized treatment of cancer. Curr Opin Sys Biol 9:1–10CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2020

Authors and Affiliations

  1. 1.Mathematical Biosciences Institute & Department of MathematicsThe Ohio State UniversityColumbusUSA
  2. 2.Department of MathematicsThe University of British Columbia OkanaganKelownaCanada

Personalised recommendations