Coinfection, Altered Vector Infectivity, and Antibody-Dependent Enhancement: The Dengue–Zika Interplay

  • Omomayowa OlawoyinEmail author
  • Christopher Kribs
Original Article


Although dengue and Zika cocirculation has increased within the past 5 years, very little is known about its epidemiological consequences. To investigate the effect of dengue and Zika cocirculation on the spread of both pathogens, we create a deterministic dengue and Zika coinfection model, the first to incorporate altered infectivity of mosquitoes (due to coinfection). The model also addresses increased infectivity due to antibody-dependent enhancement (ADE) within the human population. Central to our analysis is the derivation and interpretation of the basic reproductive number and invasion reproductive number of both pathogens. In addition, we investigate how model parameters impact the persistence of each disease. Our results identify threshold conditions under which one disease facilitates the spread of the other and show that ADE has a greater impact on disease persistence than altered vector infectivity. This work highlights the importance of ADE and illustrates that while the endemic presence of dengue facilitates the spread of Zika, it is possible for high Zika prevalence to prevent the establishment of dengue.


Invasion reproductive number Copersistence Zika Dengue 



The authors acknowledge the National Science Foundation as this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1746052. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. Abrao E, da Fonseca B (2016) Infection of mosquito cells (c6/36) by dengue-2 virus interferes with subsequent infection by yellow fever virus. Vector-Borne Zoonotic Dis 16(2):124–130CrossRefGoogle Scholar
  2. Andraud M, Hens N, Marais C, Beutels P (2012) Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS ONE 7(11):e49085CrossRefGoogle Scholar
  3. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA, Krysztof D, Tortorella D, Stramer SL, García-Sastre A, Krammer F, Lim JK (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356(6334):175–180CrossRefGoogle Scholar
  4. Braselton J, Bakach L (2015) A survey of mathematical models of dengue fever. J Comput Sci Syst Biol 8(5):255–267Google Scholar
  5. Carrillo-Hernández M, Ruiz-Saenz J, Villamizar L, Gómez-Rangel S, Martínez-Gutierrez M (2018) Co-circulation and simultaneous co-infection of dengue, chikungunya, and Zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis 18(1):61CrossRefGoogle Scholar
  6. Charles A, Christofferson R (2016) Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro. PLoS Currents, 8:ecurrents.outbreaks.4ab8bc87c945eb41cd8a49e127082620Google Scholar
  7. Chaves B, Orfano A, Nogueira P, Rodrigues N, Campolina T, Nacif-Pimenta R, Pires A, Júnior A, Paz A, Vaz E et al (2018) Coinfection with Zika virus (ZIKV) and dengue virus results in preferential ZIKV transmission by vector bite to vertebrate host. J Infect Dis 218(4):563–571CrossRefGoogle Scholar
  8. Crawford B, Kribs C (2009) The impact of vaccination and coinfection on HPV and cervical cancer. Discrete Contin Dyn Syst Ser B 12(2):279–304MathSciNetzbMATHGoogle Scholar
  9. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau V-M, Malasit P, Rey F et al (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat Immunol 17(9):1102–1108CrossRefGoogle Scholar
  10. Dupont-Rouzeyrol M, O’Connor O, Calvez E, Daures M, John M, Grangeon J-P, Gourinat A-C (2015) Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerg Infect Dis 21(2):381–382CrossRefGoogle Scholar
  11. Durbin A (2016) Dengue antibody and Zika: friend or foe? Trends Immunol 37(10):635–636CrossRefGoogle Scholar
  12. Gao D, Lou Y, He D, Porco T, Kuang Y, Chowell G, Ruan S (2016) Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci Rep 6:28070CrossRefGoogle Scholar
  13. George J, Valiant WG, Mattapallil MJ, Walker M, Huang YS, Vanlandingham DL, Misamore J, Greenhouse J, Weiss DE, Verthelyi D, Higgs S, Andersen H, Lewis MG, Mattapallil JJ (2017) Prior exposure to Zika virus significantly enhances peak dengue-2 viremia in rhesus macaques. Sci Rep 7:10498CrossRefGoogle Scholar
  14. Isea R, Lonngren K (2016) A preliminary mathematical model for the dynamic transmission of dengue, chikungunya and Zika. Am J Mod Phys Appl 3:11–15Google Scholar
  15. Kawiecki A, Christofferson R (2016) Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro. J Infect Dis 214(9):1357–1360CrossRefGoogle Scholar
  16. Kumar K, Singh P, Tomar J, Baijal S (2010) Dengue: epidemiology, prevention and pressing need for vaccine development. Asian Pac J Trop Med 3(12):997–1000CrossRefGoogle Scholar
  17. Lovine N, Lednicky J, Cherabuddi K, Crooke H, White S, Loeb J, Cella E, Ciccozzi M, Salemi M, Morris J Jr (2017) Coinfection with Zika and dengue-2 viruses in a traveler returning from Haiti, 2016: clinical presentation and genetic analysis. Clin Infect Dis 64(1):72–75CrossRefGoogle Scholar
  18. Magalhaes T, Robison A, Young M, Black W, Foy B, Ebel G, Rückert C (2018) Sequential infection of Aedes aegypti mosquitoes with chikungunya virus and Zika virus enhances early Zika virus transmission. Insects 9(4):177CrossRefGoogle Scholar
  19. Manore C, Hickmann K, Xu S, Wearing H, Hyman J (2014) Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J Theor Biol 356:174–191MathSciNetCrossRefGoogle Scholar
  20. Martcheva M (2009) A non-autonomous multi-strain SIS epidemic model. J Biol Dyn 3(2–3):235–251MathSciNetCrossRefGoogle Scholar
  21. Mitchell C, Kribs C (2019) Invasion reproductive numbers for periodic epidemic systems. Infect Dis Model 4:124–141Google Scholar
  22. Moraes G, de Fátima Duarte E, Duarte E (2013) Determinants of mortality from severe dengue in Brazil: a population-based case-control study. Am J Trop Med Hyg 88(4):670–676CrossRefGoogle Scholar
  23. Mustafa M, Rasotgi V, Jain S, Gupta V (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India 71(1):67–70CrossRefGoogle Scholar
  24. Okuneye K, Velasco-Hernandez J, Gumel A (2017) The “unholy” chikungunya-dengue-Zika trinity: a theoretical analysis. J Biol Syst 25(04):545–585MathSciNetCrossRefGoogle Scholar
  25. Olawoyin O, Kribs C (2018) Effects of multiple transmission pathways on Zika dynamics. Infect Dis Model 3:331–344Google Scholar
  26. PAHO (2016) Provisional remarks on Zika virus infection in pregnant women: document for health care professionals. Accessed 18 Oct 2018
  27. Paul L, Carlin E, Jenkins M, Tan A, Barcellona C, Nicholson C, Michael S, Isern S (2016) Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunol 5(12):e117CrossRefGoogle Scholar
  28. Porco T, Blower S (1998) Designing HIV vaccination policies: subtypes and cross-immunity. Interfaces 28(3):167–190CrossRefGoogle Scholar
  29. Rückert C, Weger-Lucarelli J, Garcia-Luna S, Young M, Byas A, Murrieta R, Fauver J, Ebel G (2017) Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun 8:15412CrossRefGoogle Scholar
  30. Shutt D, Manore C, Pankavich S, Porter A, Del Valle S (2017) Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America. Epidemics 21:63–79CrossRefGoogle Scholar
  31. Stettler K, Beltramello M, Espinosa D, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F et al (2016) Specificity, cross-reactivity and function of antibodies elicited by Zika virus infection. Science 353(6301):823–826CrossRefGoogle Scholar
  32. Tang B, Xiao Y, Wu J (2016) Implication of vaccination against dengue for zika outbreak. Sci Rep 6:35623CrossRefGoogle Scholar
  33. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48MathSciNetCrossRefGoogle Scholar
  34. Waggoner J, Gresh L, Vargas M, Ballesteros G, Tellez Y, Soda K, Sahoo M, Nuñez A, Balmaseda A, Harris E et al (2016) Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus. Clin Infect Dis 63(12):1584–1590CrossRefGoogle Scholar
  35. Wang L, Zhao H (2019) Dynamics analysis of a Zika-dengue co-infection model with dengue vaccine and antibody-dependent enhancement. Phys A Stat Mech Appl 522:248–273MathSciNetCrossRefGoogle Scholar
  36. Whitehead S, Blaney J, Durbin A, Murphy B (2007) Prospects for a dengue virus vaccine. Nat Rev Microbiol 5(7):518CrossRefGoogle Scholar
  37. Wiratsudakul A, Suparit P, Modchang C (2018) Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches. PeerJ 6:e4526CrossRefGoogle Scholar
  38. World Health Organization (2012) Global strategy for dengue prevention and control 2012–2020. WHO Library Cataloguing-in-Publication Data, GenevaGoogle Scholar
  39. Yang H, Macoris M, Galvani K, Andrighetti M, Wanderley D (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137(8):1188–1202CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations