Skip to main content

Advertisement

Log in

Control of Intracellular Molecular Networks Using Algebraic Methods

  • Methods and Software
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many problems in biology and medicine have a control component. Often, the goal might be to modify intracellular networks, such as gene regulatory networks or signaling networks, in order for cells to achieve a certain phenotype, what happens in cancer. If the network is represented by a mathematical model for which mathematical control approaches are available, such as systems of ordinary differential equations, then this problem might be solved systematically. Such approaches are available for some other model types, such as Boolean networks, where structure-based approaches have been developed, as well as stable motif techniques. However, increasingly many published discrete models are mixed-state or multistate, that is, some or all variables have more than two states, and thus the development of control strategies for multistate networks is needed. This paper presents a control approach broadly applicable to general multistate models based on encoding them as polynomial dynamical systems over a finite algebraic state set, and using computational algebra for finding appropriate intervention strategies. To demonstrate the feasibility and applicability of this method, we apply it to a recently developed multistate intracellular model of E2F-mediated bladder cancerous growth and to a model linking intracellular iron metabolism and oncogenic pathways. The control strategies identified for these published models are novel in some cases and represent new hypotheses, or are supported by the literature in others as potential drug targets. Our Macaulay2 scripts to find control strategies are publicly available through GitHub at https://github.com/luissv7/multistatepdscontrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert R, Thakar J (2014) Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip Rev Syst Biol Med 6(5):353–369

    Article  Google Scholar 

  • Chaouiya C, Remy E, Thieffry D (2006) Qualitative petri net modelling of genetic networks. Springer Berlin Heidelberg, Berlin, pp 95–112

    MATH  Google Scholar 

  • Chifman J, Arat S, Deng Z, Lemler E, Pino JC, Harris LA, Kochen MA, Lopez CF, Akman SA, Torti FM et al (2017) Activated oncogenic pathway modifies iron network in breast epithelial cells: a dynamic modeling perspective. PLoS Comput Biol 13(2):e1005352

    Article  Google Scholar 

  • Choi M, Shi J, Jung SH, Chen X, Cho KH (2012) Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to dna damage. Sci Signal 5(251):ra83

    Article  Google Scholar 

  • Correia RB, Gates AJ, Wang X, Rocha LM (2018) Cana: a python package for quantifying control and canalization in Boolean networks. Front Physiol 9

  • Cox D, Little J, O’shea D (1998) Using algebraic geometry, volume 185 of graduate texts in mathematics

    Book  Google Scholar 

  • Cox D, Little J, OShea D (2013) Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer, Berlin

    Google Scholar 

  • Dang CV, Reddy EP, Shokat KM, Soucek L (2017) Drugging the’undruggable’cancer targets. Nat Rev Cancer 17(8):502

    Article  Google Scholar 

  • Deng Z, Manz DH, Torti SV, Torti FM (2017) Effects of ferroportin-mediated iron depletion in cells representative of different histological subtypes of prostate cancer. Antioxid Redox Signal 30(8):1043–1061

    Article  Google Scholar 

  • Didier G, Remy E, Chaouiya C (2011) Mapping multivalued onto Boolean dynamics. J Theor Biol 270(1):177–184. https://doi.org/10.1016/j.jtbi.2010.09.017

    Article  MathSciNet  MATH  Google Scholar 

  • Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939. https://doi.org/10.1105/tpc.104.021725

    Article  Google Scholar 

  • Fiedler B, Mochizuki A, Kurosawa G, Saito D (2013) Dynamics and control at feedback vertex sets. i: Informative and determining nodes in regulatory networks. J Dyn Differ Equ 25(3):563–604

    Article  MathSciNet  Google Scholar 

  • Gan X, Albert R (2018) General method to find the attractors of discrete dynamic models of biological systems. Phys Rev E 97(4):042308

    Article  MathSciNet  Google Scholar 

  • Gates AJ, Rocha LM (2016) Control of complex networks requires both structure and dynamics. Sci Rep 6:24456

    Article  Google Scholar 

  • Grayson DR, Stillman ME Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  • Hinkelmann F, Brandon M, Guang B, McNeill R, Blekherman G, Veliz-Cuba A, Laubenbacher R (2011) Adam: analysis of discrete models of biological systems using computer algebra. BMC Bioinform 12:295. https://doi.org/10.1186/1471-2105-12-295

    Article  Google Scholar 

  • Hinkelmann F, Murrugarra D, Jarrah AS, Laubenbacher R (2011) A mathematical framework for agent based models of complex biological networks. Bull Math Biol 73(7):1583–1602. https://doi.org/10.1007/s11538-010-9582-8

    Article  MathSciNet  MATH  Google Scholar 

  • Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med (Berl) 77(6):469–80

    Article  Google Scholar 

  • Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20(7):869–876. https://doi.org/10.1016/j.semcdb.2009.07.003

    Article  Google Scholar 

  • Ireland K, Rosen M (2013) A classical introduction to modern number theory, vol 84. Springer, Berlin

    MATH  Google Scholar 

  • Kauffman S (1969a) Homeostasis and differentiation in random genetic control networks. Nature 224(5215):177–178

    Article  Google Scholar 

  • Kauffman SA (1969b) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–67

    Article  MathSciNet  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform 7:56. https://doi.org/10.1186/1471-2105-7-56

    Article  Google Scholar 

  • Li R, Yang M, Chu T (2015) Controllability and observability of boolean networks arising from biology. Chaos 25(2):023104. https://doi.org/10.1063/1.4907708

    Article  MathSciNet  MATH  Google Scholar 

  • Lidl R, Niederreiter H (1994) Introduction to finite fields and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Liu JC, Granieri L, Shrestha M, Wang DY, Vorobieva I, Rubie EA, Jones R, Ju Y, Pellecchia G, Jiang Z et al (2018) Identification of cdc25 as a common therapeutic target for triple-negative breast cancer. Cell Rep 23(1):112–126

    Article  Google Scholar 

  • Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV (2016) Iron and cancer: recent insights. Ann N Y Acad Sci 1368(1):149–161

    Article  Google Scholar 

  • Mochizuki A, Fiedler B, Kurosawa G, Saito D (2013) Dynamics and control at feedback vertex sets. ii: A faithful monitor to determine the diversity of molecular activities in regulatory networks. J Theor Biol 335:130–146

    Article  MathSciNet  Google Scholar 

  • Murrugarra D, Dimitrova ES (2015) Molecular network control through boolean canalization. EURASIP J Bioinform Syst Biol 2015(1):9. https://doi.org/10.1186/s13637-015-0029-2

    Article  Google Scholar 

  • Murrugarra D, Veliz-Cuba A, Aguilar B, Laubenbacher R (2016) Identification of control targets in boolean molecular network models via computational algebra. BMC Syst Biol 10(1):94. https://doi.org/10.1186/s12918-016-0332-x

    Article  Google Scholar 

  • Naldi A, Berenguier D, Fauré A, Lopez F, Thieffry D, Chaouiya C (2009) Logical modelling of regulatory networks with ginsim 2.3. Biosystems 97(2):134–139. https://doi.org/10.1016/j.biosystems.2009.04.008

    Article  Google Scholar 

  • Pinnix ZK, Miller LD, Wang W, D’Agostino R, Kute T, Willingham MC, Hatcher H, Tesfay L, Sui G, Di X et al (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med 2(43):43ra56–43ra56

    Article  Google Scholar 

  • Poret A, Boissel JP (2014) An in silico target identification using boolean network attractors: avoiding pathological phenotypes. CR Biol 337(12):661–678. https://doi.org/10.1016/j.crvi.2014.10.002

    Article  Google Scholar 

  • Qiu Y, Tamura T, Ching WK, Akutsu T (2014) On control of singleton attractors in multiple boolean networks: integer programming-based method. BMC Syst Biol 8 Suppl 1:S7. https://doi.org/10.1186/1752-0509-8-S1-S7

    Article  Google Scholar 

  • Remy E, Rebouissou S, Chaouiya C, Zinovyev A, Radvanyi F, Calzone L (2015) A modelling approach to explain mutually exclusive and co-occurring genetic alterations in bladder tumorigenesis. Cancer Res 0602

  • Richelle A, Lewis NE (2017) Improvements in protein production in mammalian cells from targeted metabolic engineering. Curr Opin Syst Biol 6:1–6

    Article  Google Scholar 

  • Saadatpour A, Wang RS, Liao A, Liu X, Loughran TP, Albert I, Albert R (2011) Dynamical and structural analysis of a t cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput Biol 7(11):e1002267. https://doi.org/10.1371/journal.pcbi.1002267

    Article  Google Scholar 

  • Schaaf G, Hamdi M, Zwijnenburg D, Lakeman A, Geerts D, Versteeg R, Kool M (2010) Silencing of spry1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated ras gene. Cancer Res 70(2):762–771

    Article  Google Scholar 

  • Shmulevich I, Dougherty ER (2010) Probabilistic Boolean networks—the modeling and control of gene regulatory networks. SIAM. http://www.ec-securehost.com/SIAM/OT118.html

  • Slack JMW (2002) Conrad hal waddington: the last renaissance biologist? Nat Rev Genet 3(11):889–895. https://doi.org/10.1038/nrg933

    Article  Google Scholar 

  • Spencer-Smith R, O’Bryan JP (2017) Direct inhibition of ras: Quest for the holy grail? In: Seminars in cancer biology. Elsevier

  • Tan Z, Zhang S (2016) Past, present, and future of targeting ras for cancer therapies. Mini Rev Med Chem 16(5):345–357

    Article  Google Scholar 

  • Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks-ii. Immunity control in bacteriophage lambda. Bull Math Biol 57(2):277–297. https://doi.org/10.1016/0092-8240(94)00037-D

    Article  MATH  Google Scholar 

  • Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13(5):342

    Article  Google Scholar 

  • Veliz-Cuba A, Jarrah AS, Laubenbacher R (2010) Polynomial algebra of discrete models in systems biology. Bioinformatics 26(13):1637–1643

    Article  Google Scholar 

  • Veliz-Cuba A, Aguilar B, Hinkelmann F, Laubenbacher R (2014) Steady state analysis of boolean molecular network models via model reduction and computational algebra. BMC Bioinform 15:221. https://doi.org/10.1186/1471-2105-15-221

    Article  Google Scholar 

  • Vera-Licona P, Bonnet E, Barillot E, Zinovyev A (2013) Ocsana: optimal combinations of interventions from network analysis. Bioinformatics 29(12):1571–1573. https://doi.org/10.1093/bioinformatics/btt195

    Article  Google Scholar 

  • Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  • Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ, Buchanan S, Henry JR, Starling JJ, Peng SB (2012) Reactivation of mitogen-activated protein kinase (mapk) pathway by fgf receptor 3 (fgfr3)/ras mediates resistance to vemurafenib in human b-raf v600e mutant melanoma. J Biol Chem 287(33):28087–28098

    Article  Google Scholar 

  • Yang G, Gómez Tejeda Zañudo J, Albert R (2018) Target control in logical models using the domain of influence of nodes. Front Physiol 9:454

    Article  Google Scholar 

  • Yu Y, Kovacevic Z, Richardson DR (2007) Tuning cell cycle regulation with an iron key. Cell Cycle 6(16):1982–1994

    Article  Google Scholar 

  • Zañudo JG, Albert R (2013) An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23(2):025111

    Article  MathSciNet  Google Scholar 

  • Zañudo JGT, Albert R (2015) Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput Biol 11(4):e1004193. https://doi.org/10.1371/journal.pcbi.1004193

    Article  Google Scholar 

  • Zañudo JGT, Scaltriti M, Albert R (2017) A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Converg 1(1):5

    Article  Google Scholar 

  • Zañudo JGT, Yang G, Albert R (2017) Structure-based control of complex networks with nonlinear dynamics. Proc Natl Acad Sci USA 114(28):7234–7239. https://doi.org/10.1073/pnas.1617387114

    Article  Google Scholar 

  • Zañudo JGT, Yang G, Albert R (2017) Structure-based control of complex networks with nonlinear dynamics. Proc Nat Acad Sci 114(28):7234–7239

    Article  Google Scholar 

  • Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461

    Article  Google Scholar 

  • Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105(42):16308–16313. https://doi.org/10.1073/pnas.0806447105

    Article  Google Scholar 

Download references

Acknowledgements

Sordo Vieira is partially supported by The National Institutes of Health Grant No. 1R01AI135128-01. Laubenbacher is partially supported by The National Institutes of Health Grants No. 1R01AI135128-01, 1U01EB024501-01, and 1R01GM127909-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Murrugarra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we denote finite fields with either \({\mathbb {F}}_q\) or \({\mathbb {F}}_p\), where p is assumed to be a prime number while q is assumed to be a power of a prime number.

1.1 Converting Mixed-State Models into Polynomial Dynamical Systems

Let q be the smallest number which is a power of a prime number such that \(q\ge |X_i|\) for all i. Consider the finite field \({\mathbb {F}}={\mathbb {F}}_q.\)

We can identify \(X_i\hookrightarrow {\mathbb {F}}\) by an injective map \(\iota _i\) for i from 1 to n. Let \(\iota =(\iota _1,\ldots , \iota _n)\). We can now consider the dynamical system \({\mathbf {F}}\) as a subsystem of a dynamical system \(\hat{{\mathbf {F}}}:{\mathbb {F}}^n\rightarrow {\mathbb {F}}^n\) as follows.

Define the map \(\alpha _i:{\mathbb {F}}\rightarrow X_i\) as \(\alpha _i(x)=\iota _i^{-1}(x)\) if \(\iota _i^{-1}(x)\ne \emptyset \) and \(\alpha _i(x)=c_i\) where \(c_i\in X_i\) otherwise. Let \(\alpha =(\alpha _1,\ldots , \alpha _n)\). Now, consider the map \(\hat{{\mathbf {F}}}=\iota \circ {\mathbf {F}} \circ \alpha \).

$$\begin{aligned} {\mathbb {F}}^n\overset{\alpha }{\rightarrow }X\overset{{\mathbf {F}}}{\rightarrow }X \overset{\iota }{\rightarrow }{\mathbb {F}}^n. \end{aligned}$$

Notice that \(\alpha _i\) essentially “crushes” the points in \({\mathbb {F}}-\iota _i(X_i)\) into a constant in \(\iota _i(X_i)\).

Example 1

We use a slight abuse of notation for convenience: When we write an integer m here, we mean the representative in the particular finite field. Consider the sets \(X_1=\{0,1,2,\ldots ,5\},X_2=\{0,\ldots ,4\}.\)

We embed \(X_1\overset{\iota _1}{\hookrightarrow }{\mathbb {F}}_7,X_2\overset{\iota _2}{\hookrightarrow }{\mathbb {F}}_7\) by inclusion. Define \(\alpha _1, \alpha _2\) as follows.

$$\begin{aligned} \alpha _1(x)= & {} {\left\{ \begin{array}{ll} x &{} {\text { if }} x\in \{0,1,\ldots ,5\} \\ 5 &{} {\text {if }} x =6 \end{array}\right. }\\ \alpha _2(x)= & {} {\left\{ \begin{array}{ll} x &{} {\text { if }} x\in \{0,1,\ldots ,4\} \\ 4 &{} {\text {if }} x =5,6. \end{array}\right. } \end{aligned}$$

Here \(\iota =(\iota _1, \iota _2)\), \(\alpha =(\alpha _1, \alpha _2)\), and \({\mathbb {F}}_7^2\overset{\alpha }{\rightarrow }X\overset{{\mathbf {F}}}{\rightarrow }X \overset{\iota }{\rightarrow }{\mathbb {F}}_7^2.\)

Veliz-Cuba et al. (2010) previously used a similar transformation for a finite field of prime order, \({\mathbb {F}}_p\), where the elements outside of \({\mathbb {F}}_p-\iota (X)\) were sent into the “largest” element \((p-1)\). However, in a general finite field \({\mathbb {F}}_q\), there is no adequate concept of the “largest element”. Notice that \(\hat{{\mathbf {F}}}(x_1,\ldots ,x_n)=(x_1,\ldots ,x_n)\) if and only if \((x_1,\ldots ,x_n)\) is in the image of \(\iota \) and \((\iota _1^{-1}(x_1),\ldots ,\iota _n^{-1}(x_n))\) is a fixed point of \({\mathbf {F}}.\) In particular, we can now “extend” the discrete dynamical system \({\mathbf {F}}\) to a discrete dynamical system \(\hat{{\mathbf {F}}}:{\mathbb {F}}^n \rightarrow {\mathbb {F}}^n\) without changing the dynamics of the original system.

1.2 An Approach for Deriving a Polynomial Dynamical System from a Mixed-State Dynamical System

A common approach to representing mixed-state dynamical systems is to give Boolean expressions for when a certain node will attain a given value based on the state of the other nodes (Zañudo et al. 2017; Remy et al. 2015). For example, in the signaling network model presented in Remy et al. (2015), the rule for representing how E2F3 attains values 1 or 2 are shown in Table 4.

In the case that some of the variables are Boolean (can only take one of two values), and the other variables are in a set of the same prime cardinality q, we can convert to a polynomial dynamical system over \({\mathbb {F}}_q\). If a variable \(x_i\) was Boolean to start with, we replace \(x_i\) with \(x_i^{q-1}\). For a variable, \(x_i\) that was not Boolean, we can write the polynomial representation by taking advantage of indicators functions \(q_j(x)=(\Pi _{i\in {\mathbb {F}}_q, i\ne j} (x-i))^{q-1}\) for \(j\in {\mathbb {F}}_q.\) For example, if a variable appears in a Boolean expression as \(x_i=j\), then we substitute that variable with \((\Pi _{i\in {\mathbb {F}}_q, i\ne j} (x-i))^{q-1}.\) Recall that the operator AND is equivalent to the product over \({\mathbb {F}}_2,\) the operator OR is equivalent to the operator \((x,y)\rightarrow x+y-(x+y)\) and NOT is equivalent to \(x\rightarrow 1+x\). Over \({\mathbb {F}}_q\), we define x AND y to be \((x,y)\rightarrow (x\cdot y)^{q-1}\), NOT x to be \(x\rightarrow 1-x^{q-1}\) and x OR y to be \((x,y)\rightarrow -(x\cdot y)^{q-1}+x^{q-1}+y^{q-1}.\)

Example 2

Consider the update rule for the transcription factor E2F3 from Remy et al. (2015), which takes values in the set \({\mathbb {F}}_3,\) and whose value depends on the nodes RB1, \(\text {CHECK1\_2}\), and RAS (Table 4). Here, the variables RB1 and RAS were Boolean variables, so we first substitute them with RB1\(^2\) and RAS\(^2.\) We then apply indicator functions for variables that were not Boolean. For example, \(\text {CHECK1\_2}\)=2 now becomes \(q_2(\text {CHECK1\_2})\) where \(q_2(x)=x+2\cdot x^2.\)

The final polynomial equation can now be formed by adding the individual functions together, times their respective value (Table 5).

$$\begin{aligned} {\hbox {E2F3}}^{*}= & {} 1\cdot (1-{\hbox {RB1}}^{2}) \cdot (1- q_2({\hbox {CHEK1}}\_2))\cdot {\hbox {RAS}}^{2}\\&+\,2\cdot (1-{\hbox {RB1}}^2)\cdot q_2 ({\hbox {CHECK1}}\_2) \cdot {\hbox {RAS}}^{2} \end{aligned}$$
Table 4 Original equations for E2F3 from Remy et al. (2015)
Table 5 The results of applying the conversion rules to the rules in Table 4

1.3 Continuity Condition and Steady States

The continuity condition is a restriction that the state of each variable does not change by more than one unit at each time step (see, e.g., Chifman et al. 2017 for details). Intuitively, the continuity condition represents that a biological quantity cannot suddenly go from high to low (or low to high) without reaching an intermediate step. Here we show that the continuity condition on polynomial dynamical systems used in Chifman et al. (2017) does not change steady states.

Fix a prime p and consider the finite field \(k={\mathbb {F}}_p\). Fix the notation

$$\begin{aligned} {\mathbf {x}}=(x_1,\ldots ,x_{i-1},x_i,x_{i+1},\ldots ,x_n), \end{aligned}$$

and let \({\mathbf {F}}_i:=f_i({\mathbf {x}})\). We will always assume that the representative for \(x_i\) is in the set \(\{0,1,\ldots ,p-1\}\).

We will say that \(f:k[x_1,\ldots ,x_n]\rightarrow k^n\) is continuous if \(|x_i-f_i({\mathbf {x}})|_{{\mathbb {R}}}\in \{0,1\} \text { for } 0\le x_i\le p-1, 1\le i \le n\). Let

$$\begin{aligned} h(x,y)={\left\{ \begin{array}{ll} x+1 &{} y>x \\ x &{} x=y \\ x-1 &{} y<x \end{array}\right. } \end{aligned}$$

Any PDS \({\mathbf {F}}:k^n\rightarrow k^n\) can be made continuous by considering \(\hat{{\mathbf {F}}}:k^n\rightarrow k^n\) where \(\hat{{\mathbf {F}}}_i=h\circ ({\mathbf {F}}_i\times \pi _i)\) where \(\pi _i\) is the projection onto the ith coordinate.

Theorem 1

Let \({\mathbf {F}}:k^n\rightarrow k^n\) be a polynomial dynamical system over a finite field k and let \(\hat{{\mathbf {F}}}:k^n\rightarrow k^n\) be the polynomial dynamical system where the continuity condition has been applied to \({\mathbf {F}}\). Then the set of fixed points of \({\mathbf {F}}\), FIX(\({\mathbf {F}})\) is equal to FIX(\(\hat{{\mathbf {F}}})\)

Proof

Let \(x \in \)FIX(\({\mathbf {F}}\)), \(\pi _i:k^n\rightarrow k\) be the projection onto the ith coordinate.

Notice \(\hat{{\mathbf {F}}}_i=h\circ ({\mathbf {F}}_i\times \pi _i)\). Then \(\hat{{\mathbf {F}}}_i(x)=h\circ ({\mathbf {F}}_i\times \pi _i)(x)=h({\mathbf {F}}_i(x),x_i)=h(x_i,x_i)=x_i\).

Now, if \(x\in \text {FIX}(\hat{{\mathbf {F}}})\), we have \(h({\mathbf {F}}_i(x),x_i)=x_i\) for all i. This can only happen if \(x_i={\mathbf {F}}_i(x)\) for all i.

As a result, we have FIX\(({\mathbf {F}})=\,\)FIX(\(\hat{{\mathbf {F}}})\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sordo Vieira, L., Laubenbacher, R.C. & Murrugarra, D. Control of Intracellular Molecular Networks Using Algebraic Methods. Bull Math Biol 82, 2 (2020). https://doi.org/10.1007/s11538-019-00679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-019-00679-w

Keywords

Navigation