Advertisement

A Next-Generation Approach to Calculate Source–Sink Dynamics in Marine Metapopulations

  • Peter D. HarringtonEmail author
  • Mark A. Lewis
Original Article

Abstract

In marine systems, adult populations confined to isolated habitat patches can be connected by larval dispersal. Source–sink theory provides effective tools to quantify the effect of specific habitat patches on the dynamics of connected populations. In this paper, we construct the next-generation matrix for a marine metapopulation and demonstrate how it can be used to calculate the source–sink dynamics of habitat patches. We investigate the effect of environmental variables on the source–sink dynamics and demonstrate how the next-generation matrix can provide useful biological insight into transient as well as asymptotic dynamics of the model.

Keywords

Source–sink dynamics Next-generation matrix Metapopulation model Marine systems 

Notes

Acknowledgements

The authors would like to thank the members of the Lewis Lab for many helpful discussions and suggestions. PDH gratefully acknowledges an NSERC CGS-M scholarship and Queen Elizabeth II scholarship, and MAL gratefully acknowledges an NSERC Discovery Grant and a Canada Research Chair. We thank an anonymous reviewer for their helpful comments.

References

  1. Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 31(2):72–81CrossRefGoogle Scholar
  2. Adams TP, Proud R, Black KD (2015) Connected networks of sea lice populations: dynamics and implications for control. Aquac Environ Interact 6(3):273–284CrossRefGoogle Scholar
  3. Aldrin M, Huseby RB, Stien A, Grøntvedt RN, Viljugrein H, Jansen PA (2017) A stage-structured Bayesian hierarchical model for salmon lice populations at individual salmon farms - Estimated from multiple farm data sets. Ecol Modell 359:333–348CrossRefGoogle Scholar
  4. Alexander SE, Roughgarden J (1996) Larval transport and population dynamics of intertidal barnacles: a coupled benthic/oceanic model. Ecol Monogr 66(3):259–275CrossRefGoogle Scholar
  5. Amarasekare P, Nisbet RM (2001) Spatial heterogeneity, source–sink dynamics, and the local coexistence of competing species. Am Nat 158(6):572–584CrossRefGoogle Scholar
  6. Armsworth PR (2002) Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83(4):1092–1104CrossRefGoogle Scholar
  7. Bateman AW, Peacock SJ, Connors B, Polk Z, Berg D, Krkošek M, Morton A (2016) Recent failure to control sea louse outbreaks on salmon in the Broughton Archipelago, British Columbia. Can J Fish Aquat Sci 73(8):1164–1172CrossRefGoogle Scholar
  8. Botsford LW, Moloney CL, Hastings A, Largier JL, Powell TM, Higgins K, Quinn JF (1994) The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations. Deep Res II 41(1):107–145CrossRefGoogle Scholar
  9. Brooks KM (2005) The effects of water temperature, salinity, and currents on the survival and distribution of the infective copepodid stage of sea lice (Lepeophtheirus salmonis) originating on atlantic salmon farms in the Broughton Archipelago of British Columbia, Canada. Rev Fish Sci 13(3):177–204CrossRefGoogle Scholar
  10. Cantrell DL, Rees EE, Vanderstichel R, Grant J, Filgueira R, Revie CW (2018) The use of kernel density estimation with a bio-physical model provides a method to quantify connectivity among Salmon farms: spatial planning and management with epidemiological relevance. Front Vet Sci 5(269):1–14Google Scholar
  11. Chen C, Beardsley R, Cowles G (2006) An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 19(1):78–89CrossRefGoogle Scholar
  12. Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22(10):475–483CrossRefGoogle Scholar
  13. Costello MJ (2009) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32(1):115–118CrossRefGoogle Scholar
  14. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466CrossRefGoogle Scholar
  15. Cowen RK, Lwiza KM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287(5454):857–859CrossRefGoogle Scholar
  16. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311(5760):522–527CrossRefGoogle Scholar
  17. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382MathSciNetzbMATHCrossRefGoogle Scholar
  18. Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7(47):873–885CrossRefGoogle Scholar
  19. Feng Z, Thieme HR (2000) Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model. SIAM J Appl Math 61(3):803–833MathSciNetzbMATHCrossRefGoogle Scholar
  20. Feng Z, Xu D, Zhao H (2007) Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bull Math Biol 69(5):1511–1536MathSciNetzbMATHCrossRefGoogle Scholar
  21. Figueira WF, Crowder LB (2006) Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. Popul Ecol 48(3):215–224CrossRefGoogle Scholar
  22. Foreman MGG, Czajko P, Stucchi DJ, Guo M (2009) A finite volume model simulation for the Broughton Archipelago, Canada. Ocean Model 30(1):29–47CrossRefGoogle Scholar
  23. Godwin SC, Krkošek M, Reynolds JD, Rogers LA, Dill LM (2017) Heavy sea louse infection is associated with decreased stomach fullness in wild juvenile sockeye salmon. Can J Fish Aquat Sci 75(10):1587–1595CrossRefGoogle Scholar
  24. Gurtin ME, MacCamy RC (1974) Non-linear age-dependent population dynamics. Arch Ration Mech Anal 54(3):66–76MathSciNetzbMATHCrossRefGoogle Scholar
  25. Gyllenberg M, Hanski I (1997) Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor Popul Biol 52(3):198–215zbMATHCrossRefGoogle Scholar
  26. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  27. Hastings A (1982) Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J Math Biol 16(1):49–55MathSciNetzbMATHCrossRefGoogle Scholar
  28. Heesterbeek JA, Roberts MG (2007) The type-reproduction number T in models for infectious disease control. Math Biosci 206(1):3–10MathSciNetzbMATHCrossRefGoogle Scholar
  29. Horn RA, Johnson CR (2012) Matrix analysis, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  30. Huang C, Cao J, Wen F, Yang X (2016a) Stability analysis of SIR model with distributed delay on complex networks. PLoS ONE 11(8):1–23Google Scholar
  31. Huang Q, Lewis MA (2015) Homing fidelity and reproductive rate for migratory populations. Theor Ecol 8(2):187–205CrossRefGoogle Scholar
  32. Huang Q, Jin Y, Lewis MA (2016b) \(R_0\) analysis of a Benthic-Drift model for a stream population. SIAM J Appl Dyn Syst 15(1):287–321MathSciNetzbMATHCrossRefGoogle Scholar
  33. Hurford A, Cownden D, Day T (2010) Next-generation tools for evolutionary invasion analyses. J R Soc Interface 7(45):561–571CrossRefGoogle Scholar
  34. Johnson SC, Albright LJ (1991) Development, growth, and survival of lepeophtheirus salmonis (Copepoda: Caligidae) under laboratory conditions. J Mar Biol Assoc United Kingdom 71(2):425–436CrossRefGoogle Scholar
  35. Jones G, Almany G, Russ G, Sale P, Steneck R, van Oppen M, Willis B (2009) Larval retention and connectivity among populations of corals and reef fishes : history, advances and challenges. Coral Reefs 28:307–325CrossRefGoogle Scholar
  36. Keyfitz BL, Keyfitz N (1997) The McKendrick partial differential equation and its uses in epidemiology and population study. Math Comput Model 26(6):1–9MathSciNetzbMATHCrossRefGoogle Scholar
  37. Krkošek M, Lewis MA (2010) An \(R_0\) theory for source-sink dynamics with application to Dreissena competition. Theor Ecol 3(1):25–43CrossRefGoogle Scholar
  38. Krkošek M, Lewis MA, Morton A, Frazer LN, Volpe JP (2006) Epizootics of wild fish induced by farm fish. Proc Natl Acad Sci USA 103(42):15506–15510CrossRefGoogle Scholar
  39. Krkošek M, Ford JS, Morton A, Lele S, Myers RA, Lewis MA (2007) Declining wild salmon populations in relation to parasites from farm salmon. Science 318(2):1772–1775CrossRefGoogle Scholar
  40. Krkošek M, Connors BM, Morton A, Lewis MA, Dill LM, Hilborn R (2011) Effects of parasites from salmon farms on productivity of wild salmon. Proc Natl Acad Sci U S A 108(35):14700–14704CrossRefGoogle Scholar
  41. Krkošek M, Bateman AW, Proboszcz S, Orr C (2012a) Dynamics of outbreak and control of salmon lice on two salmon farms in the Broughton Archipelago, British Columbia. Aquac Environ Interact 1(2):137–146CrossRefGoogle Scholar
  42. Krkošek M, Connors BM, Lewis MA, Poulin R (2012b) Allee effects may slow the spread of parasites in a coastal marine ecosystem. Am Nat 179(3):401–412CrossRefGoogle Scholar
  43. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15(3):237–250Google Scholar
  44. Lewis MA, Shuai Z, van den Driessche P (2019) A general theory for target reproduction numbers with applications to ecology and epidemiology. J Math Biol 78(7):2317–2339MathSciNetzbMATHCrossRefGoogle Scholar
  45. Li CK, Schneider H (2002) Applications of Perron-Frobenius theory to population dynamics. J Math Biol 44(5):450–462MathSciNetzbMATHCrossRefGoogle Scholar
  46. McKendrick AG (1925) Applications of mathematics to medical problems. Proc Edinb Math Soc 44:98–130CrossRefGoogle Scholar
  47. McKenzie HW, Jin Y, Jacobsen J, Lewis MA (2012) \(R_0\) analysis of a spatiotemporal model for a stream population. SIAM J Appl Dyn Syst 11(2):567–596MathSciNetzbMATHCrossRefGoogle Scholar
  48. Mileikovsky SA (1971) Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol Int J Life Ocean Coast Waters 10(3):193–213Google Scholar
  49. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci 106(14):5693–5697CrossRefGoogle Scholar
  50. Pulliam HR (1988) Sources, sinks and population regulation. Am Nat 132(5):652–661CrossRefGoogle Scholar
  51. Revie CW, Robbins C, Gettinby G, Kelly L, Treasurer JW (2005) A mathematical model of the growth of sea lice, Lepeophtheirus salmonis, populations on farmed Atlantic salmon, Salmo salar L., in Scotland and its use in the assessment of treatment strategies. J Fish Dis 28(10):603–614Google Scholar
  52. Roberts MG, Heesterbeek JA (2003) A new method for estimating the effort required to control an infectious disease. Proc R Soc B Biol Sci 270(1522):1359–1364CrossRefGoogle Scholar
  53. Rogers LA, Peacock SJ, McKenzie P, DeDominicis S, Jones SR, Chandler P, Foreman MG, Revie CW, Krkošek M (2013) Modeling parasite dynamics on farmed salmon for precautionary conservation management of wild salmon. PLoS ONE 8(4)Google Scholar
  54. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241(4872):1460–1466MathSciNetzbMATHCrossRefGoogle Scholar
  55. Stien A, Bjørn PA, Heuch PA, Elston DA (2005) Population dynamics of salmon lice Lepeophtheirus salmonis on Atlantic salmon and sea trout. Mar Ecol Prog Ser 290:263–275CrossRefGoogle Scholar
  56. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1–2):29–48MathSciNetzbMATHCrossRefGoogle Scholar
  57. Watson JR, Kendall BE, Siegel DA, Mitarai S (2012) Changing seascapes, stochastic connectivity, and marine metapopulation dynamics. Am Nat 180(1):99–112CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2020

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations