Advertisement

Bulletin of Mathematical Biology

, Volume 81, Issue 10, pp 4251–4270 | Cite as

Analysis of a Mathematical Model for the Glutamate/Glutamine Cycle in the Brain

  • A. Perrillat-Mercerot
  • N. Bourmeyster
  • C. Guillevin
  • A. MiranvilleEmail author
  • R. Guillevin
Original Article
  • 60 Downloads

Abstract

Our aim in this article is to study the well-posedness and properties of a system with delay which is related with brain glutamate and glutamine kinetics. In particular, we prove the existence and uniqueness of nonnegative solutions. We also give numerical simulations and compare their order of magnitude with experimental data.

Keywords

Brain glutamate/glutamine cycle Substrate kinetics System with delay Regularity Well-posedness Linear stability Simulations 

Mathematics Subject Classification

34A34 35B09 35Q92 

Notes

References

  1. Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16(10):619–634CrossRefGoogle Scholar
  2. Burke D, Kiernan MC, Bostock H (2001) Excitability of human axons. Clin Neurophysiol 112(9):1575–1585CrossRefGoogle Scholar
  3. Cloutier M, Bolger FB, Lowry JP, Wellstead P (2009) An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. J Comput Neurosci 27:391–414MathSciNetCrossRefGoogle Scholar
  4. Featherstone DE, Shippy SA (2008) Regulation of synaptic transmission by ambient extracellular glutamate. The Neuroscientist 14(2):171–181CrossRefGoogle Scholar
  5. Gruetter R, Seaquist ER, Ugurbil K (2001) A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281(1):E100–E112CrossRefGoogle Scholar
  6. Hertz L, Rothman DL (2017) Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology 6:17CrossRefGoogle Scholar
  7. Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26(5):665–672CrossRefGoogle Scholar
  8. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shuman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22(5):1523–1531CrossRefGoogle Scholar
  9. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, Brown WD, Hacein-Bey L (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. Am J Neuroradiol 22(10):1813–1824Google Scholar
  10. McKenna MC (2017) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85(15):3347–3358CrossRefGoogle Scholar
  11. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4):1007S–1015SCrossRefGoogle Scholar
  12. Moussawi K, Riegel A, Nair S, Kalivas P (2011) Extracellular glutamate: functional compartments operate in different concentration ranges. Front Syst Neurosci 5:94CrossRefGoogle Scholar
  13. Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46(3):519–534CrossRefGoogle Scholar
  14. Rimmele TS, Rosenberg PA (2016) Glt-1: the elusive presynaptic glutamate transporter. Neurochem Int 98:19–28CrossRefGoogle Scholar
  15. Rose CR, Ziemens D, Untiet V, Fahlke C (2016) Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 136:3–16CrossRefGoogle Scholar
  16. Shen J (2013) Modeling the glutamate-glutamine neurotransmitter cycle. Front Neuroenerg 5:1CrossRefGoogle Scholar
  17. Xu H, Zhang H, Zhang J, Huang Q, Shen Z, Wu R (2016) Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: implications for psychiatric disorders. Neurosci Biobehav Rev 71:563–577CrossRefGoogle Scholar
  18. Yelamanchi SD, Jayaram S, Thomas JK, Gundimeda S, Khan AA, Singhal A, Keshava Prasad TS, Pandey A, Somani BL, Gowda H (2016) A pathway map of glutamate metabolism. J Cell Commun Signal 10(1):69–75CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Equipe DACTIM-MISUniversité de PoitiersChasseneuil Futuroscope CedexFrance
  2. 2.Laboratoire Signalisation et Transports Ioniques Membranaires, ERL CNRS 7003, Equipe 4CS, CHU de PoitiersUniversité de PoitiersPoitiersFrance
  3. 3.CHU de PoitiersPoitiersFrance

Personalised recommendations