Advertisement

Bulletin of Mathematical Biology

, Volume 81, Issue 10, pp 4144–4173 | Cite as

Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model

  • Paul A. ValleEmail author
  • Luis N. Coria
  • Yolocuauhtli Salazar
Original Article
  • 213 Downloads

Abstract

Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.

Keywords

Tumor clearance Tumor persistence Global stability Chemo-immunotherapy 

Notes

Acknowledgements

This work is fulfilled within the TecNM Project Number 6575.18-P “Ingeniería aplicada mediante el modelizado matemático para comprender la evolución del cáncer, la respuesta inmunológica y el efecto de algunos tratamientos,” the TecNM Project Number 6178.17-P “Modelos matemáticos para cáncer, VIH y enfisema,” the TecNM Project “Biomatemáticas: modelizado y análisis para comprender fenómenos del mundo real” and the PRODEP research group ITTIJ-CA-6.

References

  1. Aogo R, Nyabadza F (2017) Modelling the dynamics of HIV-related non-Hodgkin lymphomas in the presence of HIV treatment and chemotherapy. Math Models Methods Appl Sci.  https://doi.org/10.1002/mma.4566 CrossRefzbMATHGoogle Scholar
  2. Botesteanu DA, Lipkowitz S, Lee JM, Levy D (2016) Mathematical models of breast and ovarian cancers. Wiley Interdiscip Rev Syst Biol Med 8(4):337–362.  https://doi.org/10.1002/wsbm.1343 CrossRefGoogle Scholar
  3. Chapman MP, Tomlin CJ (2016) Ordinary differential equations in cancer biology. bioRxiv.  https://doi.org/10.1101/071134 CrossRefGoogle Scholar
  4. Cortés M, Sanchez-Moral L, de Barrios O, Fernández-Aceñero MJ, Martínez-Campanario M, Esteve-Codina A, Darling DS, Győrffy B, Lawrence T, Dean DC et al (2017) Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. The EMBO J.  https://doi.org/10.15252/embj.201797345 CrossRefGoogle Scholar
  5. De Leenheer P, Aeyels D (2001) Stability properties of equilibria of classes of cooperative systems. IEEE Trans Autom Contr 46(12):1996–2001.  https://doi.org/10.1109/9.975508 MathSciNetCrossRefzbMATHGoogle Scholar
  6. de Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 238(4):841–862.  https://doi.org/10.1016/j.jtbi.2005.06.037 MathSciNetCrossRefGoogle Scholar
  7. de Pillis LG, Gu W, Fister KR, Ta Head, Maples K, Murugan A, Neal T, Yoshida K (2007) Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math Biosci 209(1):292–315.  https://doi.org/10.1016/j.mbs.2006.05.003 MathSciNetCrossRefzbMATHGoogle Scholar
  8. de Pillis L, Renee Fister K, Gu W, Collins C, Daub M, Gross D, Moore J, Preskill B (2009) Mathematical model creation for cancer chemo-immunotherapy. Comput Math Methods Med 10(3):165–184.  https://doi.org/10.1080/17486700802216301 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Edelman LB, Eddy JA, Price ND (2009) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2(4):438–459.  https://doi.org/10.1002/wsbm.75 CrossRefGoogle Scholar
  10. Eisenberg MC, Jain HV (2017) A confidence building exercise in data and identifiability: modeling cancer chemotherapy as a case study. J Theor Biol 431:63–78.  https://doi.org/10.1016/j.jtbi.2017.07.018 CrossRefzbMATHGoogle Scholar
  11. Engelhart M, Lebiedz D, Sager S (2011) Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Math Biosci 229(1):123–134.  https://doi.org/10.1016/j.mbs.2010.11.007 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186.  https://doi.org/10.1056/NEJM197111182852108 CrossRefGoogle Scholar
  13. Ghaffari A, Bahmaie B, Nazari M (2016) A mixed radiotherapy and chemotherapy model for treatment of cancer with metastasis. Math Models Methods Appl Sci 39(15):4603–4617.  https://doi.org/10.1002/mma.3887 MathSciNetCrossRefGoogle Scholar
  14. Gras Navarro A, Björklund AT, Chekenya M (2015) Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol 6:202.  https://doi.org/10.3389/fimmu.2015.00202 CrossRefGoogle Scholar
  15. Hirata Y, Azuma S, Aihara K (2014) Model predictive control for optimally scheduling intermittent androgen suppression of prostate cancer. Methods 67(3):278–281.  https://doi.org/10.1016/j.ymeth.2014.03.018 CrossRefGoogle Scholar
  16. Hirsch MW (1985) Systems of differential equations that are competitive or cooperative II: convergence almost everywhere. SIAM J Math Anal 16(3):423–439.  https://doi.org/10.1137/0516030 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kareva I, Waxman DJ, Klement GL (2015) Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett 358(2):100–106.  https://doi.org/10.1016/j.canlet.2014.12.039 CrossRefGoogle Scholar
  18. Kerbel RS, Klement G, Pritchard KI, Kamen B (2002) Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol 13(1):12–15.  https://doi.org/10.1093/annonc/mdf093 CrossRefGoogle Scholar
  19. Khalil HK (2002) Nonlinear systems. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  20. Kiran KL, Lakshminarayanan S (2011) Application of scaling and sensitivity analysis for tumor–immune model reduction. Chem Eng Sci 66(21):5164–5172.  https://doi.org/10.1016/j.ces.2011.07.003 CrossRefGoogle Scholar
  21. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without over toxicity. J Clin Investig 105(8):R15.  https://doi.org/10.1172/JCI8829 CrossRefGoogle Scholar
  22. Korobeinikov A, Starkov KE, Valle PA (2017) Modeling cancer evolution: evolutionary escape under immune system control. J Phys Conf Ser 811(1):012004.  https://doi.org/10.1088/1742-6596/811/1/012004 MathSciNetCrossRefGoogle Scholar
  23. Krishchenko AP (2005) Localization of invariant compact sets of dynamical systems. Differ Equ 41(12):1669–1676.  https://doi.org/10.1007/s10625-006-0003-6 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Krishchenko AP, Starkov KE (2006) Localization of compact invariant sets of the Lorenz system. Phys Lett A 353(5):383–388.  https://doi.org/10.1016/j.physleta.2005.12.104 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Ku-Carrillo RA, Delgadillo SE, Chen-Charpentier B (2016) A mathematical model for the effect of obesity on cancer growth and on the immune system response. Appl Math Model 40(7–8):4908–4920.  https://doi.org/10.1016/j.apm.2015.12.018 MathSciNetCrossRefGoogle Scholar
  26. Liu W, Freedman H (2005) A mathematical model of vascular tumor treatment by chemotherapy. Math Comput Model 42(9–10):1089–1112.  https://doi.org/10.1016/j.mcm.2004.09.008 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Louzoun Y, Xue C, Lesinski GB, Friedman A (2014) A mathematical model for pancreatic cancer growth and treatments. J Theor Biol 351:74–82.  https://doi.org/10.1016/j.jtbi.2014.02.028 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Nars MS, Kaneno R (2013) Immunomodulatory effects of low dose chemotherapy and perspectives of its combination with immunotherapy. Int J Cancer 132(11):2471–2478.  https://doi.org/10.1002/ijc.27801 CrossRefGoogle Scholar
  29. Orlando PA, Gatenby RA, Brown JS (2012) Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy. Phys Biol 9(6):065007.  https://doi.org/10.1088/1478-3975/9/6/065007 CrossRefGoogle Scholar
  30. Perko L (2013) Differential equations and dynamical systems, vol 7. Springer, BerlinzbMATHGoogle Scholar
  31. Petit A, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151(6):1523–1530Google Scholar
  32. Sachs R, Hlatky L, Hahnfeldt P (2001) Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model 33(12–13):1297–1305.  https://doi.org/10.1016/s0895-7177(00)00316-2 MathSciNetCrossRefzbMATHGoogle Scholar
  33. Sharma S, Samanta G (2016) Analysis of the dynamics of a tumor-immune system with chemotherapy and immunotherapy and quadratic optimal control. Differ Equ Dyn Syst 24(2):149–171.  https://doi.org/10.1007/s12591-015-0250-1 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Shi J, Alagoz O, Erenay FS, Su Q (2014) A survey of optimization models on cancer chemotherapy treatment planning. Ann Oper Res 221(1):331–356.  https://doi.org/10.1007/s10479-011-0869-4 MathSciNetCrossRefzbMATHGoogle Scholar
  35. Soto AM, Sonnenschein C (1985) The role of estrogens on the proliferation of human breast tumor cells (MCF-7). J Steroid Biochem 23(1):87–94.  https://doi.org/10.1016/0022-4731(85)90265-1 CrossRefGoogle Scholar
  36. Starkov KE, Coria LN (2013) Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy. Nonlinear Anal Real World Appl 14(3):1425–1433.  https://doi.org/10.1016/j.nonrwa.2012.10.006 MathSciNetCrossRefzbMATHGoogle Scholar
  37. Suzuki H, Nagai K, Yamaki H, Tanaka N, Umezawa H (1968) Mechanism of action of bleomycin. Studies with the growing culture of bacterial and tumor cells. J Antibiot 21(6):379–386.  https://doi.org/10.7164/antibiotics.21.379 CrossRefGoogle Scholar
  38. Trisilowati, Mallet DG (2012) In silico experimental modeling of cancer treatment. ISRN Oncol.  https://doi.org/10.5402/2012/828701 CrossRefzbMATHGoogle Scholar
  39. Valle PA, Starkov KE, Coria LN (2016) Global stability and tumor clearance conditions for a cancer chemotherapy system. Commun Nonlinear Sci Numer Simul 40:206–215.  https://doi.org/10.1016/j.cnsns.2016.04.025 MathSciNetCrossRefGoogle Scholar
  40. Valle PA, Coria LN, Gamboa D, Plata C (2018) Bounding the dynamics of a chaotic-cancer mathematical model. Math Probl Eng 2018:14.  https://doi.org/10.1155/2018/9787015 MathSciNetCrossRefGoogle Scholar
  41. Zhang Y, Deng Y, Luther T, Müller M, Ziegler R, Waldherr R, Stern DM, Nawroth PP (1994) Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94(3):1320–1327.  https://doi.org/10.1172/jci117451 CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Postgraduate Program in Engineering Sciences, BioMath Research GroupTijuana Institute of TechnologyTijuanaMexico
  2. 2.Department of Electric and Electronic EngineeringDurango Institute of TechnologyDurangoMexico

Personalised recommendations