Advertisement

Identifiability from a Few Species for a Class of Biochemical Reaction Networks

  • Gabriela Jeronimo
  • Mercedes Pérez MillánEmail author
  • Pablo Solernó
Article
  • 11 Downloads

Abstract

Under mass-action kinetics, biochemical reaction networks give rise to polynomial autonomous dynamical systems whose parameters are often difficult to estimate. We deal in this paper with the problem of identifying the kinetic parameters of a class of biochemical networks which are abundant, such as multisite phosphorylation systems and phosphorylation cascades (for example, MAPK cascades). For any system of this class, we explicitly exhibit a single species for each connected component of the associated digraph such that the successive total derivatives of its concentration allow us to identify all the parameters occurring in the component. The number of derivatives needed is bounded essentially by the length of the corresponding connected component of the digraph. Moreover, in the particular case of the cascades, we show that the parameters can be identified from a bounded number of successive derivatives of the last product of the last layer. This theoretical result induces also a heuristic interpolation-based identifiability procedure to recover the values of the rate constants from exact measurements.

Keywords

Chemical reaction networks Mass-action kinetics Identifiability MAPK cascade 

Notes

Acknowledgements

The authors wish to thank the anonymous referees for their thoughtful comments which helped to improve the manuscript.

Supplementary material

References

  1. Anguelova M, Karlsson J, Jirstrand M (2012) Minimal output sets for identifiability. Math Biosci 239:139–153MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M (2011) Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl Acad Sci USA 108(31):12675–12680CrossRefGoogle Scholar
  3. Bellman R, Åström K (1970) On structural identifiability. Math Biosci 7(3):329–339CrossRefGoogle Scholar
  4. Bellu G, Saccomani MP, Audoly S, D’Angìo L (2007) DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed 88:52–61CrossRefGoogle Scholar
  5. Boulier F (2007) Differential elimination and biological modelling. Radon Ser Comput Appl Math 2:111–139MathSciNetzbMATHGoogle Scholar
  6. Brouwer AF, Meza R, Eisenberg MC (2017) A systematic approach to determining the identifiability of multistage carcinogenesis models. Risk Anal 37(7):1375–1387CrossRefGoogle Scholar
  7. Catozzi S, Di-Bella JP, Ventura A, Sepulchre JA (2016) Signaling cascades transmit information downstream and upstream but unlikely simultaneously. BMC Syst Biol 16(1):1–20Google Scholar
  8. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239Google Scholar
  9. Chis O-T, Banga JR, Balsa-Canto E (2011a) Structural identifiability of systems biology models: a critical comparison of methods. PLoS ONE 6(11):e27755CrossRefGoogle Scholar
  10. Chiş O, Banga JR, Balsa-Canto E (2011b) GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27(18):2610–2611Google Scholar
  11. Craciun G, Pantea C (2008) Identifiability of chemical reaction networks. J Math Chem 44:244–259MathSciNetCrossRefzbMATHGoogle Scholar
  12. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252CrossRefGoogle Scholar
  13. Deshaies RJ, Ferrell JE (2001) Multisite phosphorylation and the countdown to S phase. Cell 107(7):819–822CrossRefGoogle Scholar
  14. DiStefano JJ III (2014) Dynamic systems biology modeling and simulation. Elsevier, London (2014)Google Scholar
  15. Hagen DR, White JK, Tidor B (2013) Convergence in parameters and predictions using computational experimental design. Interface Focus 3:20130008CrossRefGoogle Scholar
  16. Hong H, Ovchinnikov A, Pogudin G, Yap C (2018a) Global identification of differential models. Preprint. URL arXiv:1801.08112
  17. Hong H, Ovchinnikov A, Pogudin G, Yap C (2018b) SIAN: software for structural identifiability analysis of ODE models. To appear in BioinformaticsGoogle Scholar
  18. Hornberg JJ, Binder B, Bruggeman FJ, Schoeber B, Heinrich R, Westerhoff HV (2005) Control of MAPK signalling: from complexity to what really matters. Oncogene 24:5533–5542CrossRefGoogle Scholar
  19. Huang C-YF, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 93(19):10078–10083CrossRefGoogle Scholar
  20. Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267:1583–1588CrossRefGoogle Scholar
  21. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869CrossRefGoogle Scholar
  22. Ligon T, Fröhlich F, Chiş O, Banga J, Balsa-Canto E, Hasenauer J (2017) GenSSI 2.0: multiexperiment structural identifiability analysis of SBML models. Bioinformatics 34(8):1421–1423CrossRefGoogle Scholar
  23. Lin J, Harding A, Giurisato E, Shaw AS (2009) KSR1 modulates the sensitivity of mitogen-activated protein kinase pathway activation in T cells without altering fundamental system outputs. Mol Cell Biol 29:2082–2091CrossRefGoogle Scholar
  24. Ljung L, Glad T (1994) On global identifiability of arbitrary model parameterizations. Automatica 30:265–276CrossRefzbMATHGoogle Scholar
  25. Maple 18 (2014) Maplesoft, a division of Waterloo Maple Inc., Waterloo, OntarioGoogle Scholar
  26. Meshkat N, Eisenberg M, DiStefano JJ III (2009) An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases. Math Biosci 222:61–72MathSciNetCrossRefzbMATHGoogle Scholar
  27. Meshkat N, Kuo C, DiStefano J (2014) On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation. PLoS ONE 9(10):e110261CrossRefGoogle Scholar
  28. Ollivier F (1990) Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. Thèse de Doctorat en Sciences, École Polytechnique, Paris, FranceGoogle Scholar
  29. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183Google Scholar
  30. Pérez Millán M, Dickenstein A (2018) The structure of MESSI biological systems. SIAM J Appl Dyn Syst 17(2):1650–1682MathSciNetCrossRefzbMATHGoogle Scholar
  31. Pohjanpalo H (1978) System identifiability based on power-series expansion of solution. Math Biosci 41:21–33MathSciNetCrossRefzbMATHGoogle Scholar
  32. Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY (2007) Bistability and oscillations in the Huang–Ferrell model of MAPK signaling. PLoS Comput Biol 3(9):1819–1826MathSciNetCrossRefGoogle Scholar
  33. Raue A, Karlsson J, Saccomani MP, Jirstrand M, Timmer J (2014) Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics 30(10):1440–1448CrossRefGoogle Scholar
  34. Saccomani MP, Audoly S, D’Angìo L (2003) Parameter identifiability of nonlinear systems: the role of initial conditions. Automatica 39(4):619–632MathSciNetCrossRefzbMATHGoogle Scholar
  35. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444CrossRefGoogle Scholar
  36. Sedoglavic A (2002) A probabilistic algorithm to test local algebraic observability in polynomial time. J Symbolic Comput 33:735–755MathSciNetCrossRefzbMATHGoogle Scholar
  37. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773(8):1213–1226CrossRefGoogle Scholar
  38. Walch OJ, Eisenberg MC (2016) Parameter identifiability and identifiable combinations in generalized Hodgkin–Huxley models. Neurocomputing 199:137–143CrossRefGoogle Scholar
  39. Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Springer, MassonzbMATHGoogle Scholar
  40. Wang L, Sontag E (2008) On the number of steady states in a multiple futile cycle. J Math Biol 57(1):29–52MathSciNetCrossRefzbMATHGoogle Scholar
  41. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180CrossRefGoogle Scholar
  42. Xia X, Moog CH (2003) Identifiability of nonlinear systems with applications to hiv/aids models. IEEE Trans Automat Contr 48:330–336MathSciNetCrossRefzbMATHGoogle Scholar
  43. Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de MatemáticaBuenos AiresArgentina
  2. 2.Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Matemáticas “Luis A. Santaló” (IMAS), Facultad de Ciencias Exactas y NaturalesBuenos AiresArgentina
  3. 3.Universidad de Buenos Aires, Ciclo Básico Común, Departamento de Ciencias ExactasBuenos AiresArgentina

Personalised recommendations