Advertisement

Bulletin of Mathematical Biology

, Volume 81, Issue 6, pp 1829–1852 | Cite as

Emergence of Oscillations in a Mixed-Mechanism Phosphorylation System

  • Carsten Conradi
  • Maya MinchevaEmail author
  • Anne Shiu
Article
  • 73 Downloads

Abstract

This work investigates the emergence of oscillations in one of the simplest cellular signaling networks exhibiting oscillations, namely the dual-site phosphorylation and dephosphorylation network (futile cycle), in which the mechanism for phosphorylation is processive, while the one for dephosphorylation is distributive (or vice versa). The fact that this network yields oscillations was shown recently by Suwanmajo and Krishnan. Our results, which significantly extend their analyses, are as follows. First, in the three-dimensional space of total amounts, the border between systems with a stable versus unstable steady state is a surface defined by the vanishing of a single Hurwitz determinant. Second, this surface consists generically of simple Hopf bifurcations. Next, simulations suggest that when the steady state is unstable, oscillations are the norm. Finally, the emergence of oscillations via a Hopf bifurcation is enabled by the catalytic and association constants of the distributive part of the mechanism; if these rate constants satisfy two inequalities, then the system generically admits a Hopf bifurcation. Our proofs are enabled by the Routh–Hurwitz criterion, a Hopf bifurcation criterion due to Yang, and a monomial parametrization of steady states.

Keywords

Multisite phosphorylation Monomial parametrization Oscillation Hopf bifurcation Routh–Hurwitz criterion 

Notes

Acknowledgements

AS was partially supported by the NSF (DMS-1312473/1513364 and DMS-1752672) and the Simons Foundation (#521874). AS thanks Jonathan Tyler for helpful discussions. CC was partially supported by the Deutsche Forschungsgemeinschaft DFG (DFG-284057449).

Supplementary material

11538_2019_580_MOESM1_ESM.nb (83 kb)
Supplementary material 1 (nb 83 KB)
11538_2019_580_MOESM2_ESM.nb (79 kb)
Supplementary material 2 (nb 78 KB)
11538_2019_580_MOESM3_ESM.nb (124 kb)
Supplementary material 3 (nb 123 KB)
11538_2019_580_MOESM4_ESM.nb (83 kb)
Supplementary material 4 (nb 83 KB)
11538_2019_580_MOESM5_ESM.nb (44 kb)
Supplementary material 5 (nb 43 KB)
11538_2019_580_MOESM6_ESM.txt (0 kb)
Supplementary material 6 (txt 0 KB)
11538_2019_580_MOESM7_ESM.txt (0 kb)
Supplementary material 7 (txt 0 KB)
11538_2019_580_MOESM8_ESM.txt (1 kb)
Supplementary material 8 (txt 1 KB)

References

  1. Aoki K, Yamada M, Kunida K, Yasuda S, Matsuda M (2011) Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc Natl Acad Sci USA 108(31):12675–12680CrossRefGoogle Scholar
  2. Atkins P, De Paula J, Keeler J (2018) Atkins’ physical chemistry. Oxford University Press, OxfordGoogle Scholar
  3. Bure EG, Rozenvasser YN (1974) On investigations of autooscillating system sensitivity, no 7. Avtomat. i Telemekh, pp 9–17Google Scholar
  4. Conradi C, Mincheva M (2014) Catalytic constants enable the emergence of bistability in dual phosphorylation. J R Soc Interface 11(95):20140158CrossRefGoogle Scholar
  5. Conradi C, Shiu A (2015) A global convergence result for processive multisite phosphorylation systems. Bull Math Biol 77(1):126–155MathSciNetCrossRefzbMATHGoogle Scholar
  6. Conradi C, Shiu A (2018) Dynamics of post-translational modification systems: recent progress and future challenges. Biophys J 114(3):507–515CrossRefGoogle Scholar
  7. Conradi C, Feliu E, Mincheva M, Wiuf C (2017) Identifying parameter regions for multistationarity. PLoS Comput Biol 13(10):e1005751CrossRefGoogle Scholar
  8. Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw 29(2):141–164MathSciNetCrossRefzbMATHGoogle Scholar
  9. Domijan M, Kirkilionis M (2009) Bistability and oscillations in chemical reaction networks. J Math Biol 59(4):467–501MathSciNetCrossRefzbMATHGoogle Scholar
  10. Eithun M, Shiu A (2017) An all-encompassing global convergence result for processive multisite phosphorylation systems. Math Biosci 291:1–9MathSciNetCrossRefzbMATHGoogle Scholar
  11. Errami H, Eiswirth M, Grigoriev D, Seiler WM, Sturm T, Weber A (2015) Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J Comput Phys 291:279–302MathSciNetCrossRefzbMATHGoogle Scholar
  12. Ferrell JE, Ha SH (2014) Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. Trends Biochem Sci 39(11):556–569CrossRefGoogle Scholar
  13. Gantmacher FR (1959) Matrix theory, vol 21. Chelsea, New YorkzbMATHGoogle Scholar
  14. Gatermann K, Eiswirth M, Sensse A (2005) Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J Symb Comput 40(6):1361–1382MathSciNetCrossRefzbMATHGoogle Scholar
  15. Gelfand IM, Kapranov MM, Zelevinsky AV (1994) Discriminants, resultants and multidimensional determinants. Birkhäuser, BaselCrossRefzbMATHGoogle Scholar
  16. Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42. Springer, BerlinzbMATHGoogle Scholar
  17. Hadač O, Muzika F, Nevoral V, Přibyl M, Schreiber I (2017) Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. PLoS ONE 12(6):1–25Google Scholar
  18. Hell J, Rendall AD (2015) A proof of bistability for the dual futile cycle. Nonlinear Anal Real 24:175–189MathSciNetCrossRefzbMATHGoogle Scholar
  19. Hilioti Z, Sabbagh W, Paliwal S, Bergmann A, Goncalves MD, Bardwell L, Levchenko A (2008) Oscillatory phosphorylation of yeast Fus3 MAP kinase controls periodic gene expression and morphogenesis. Curr Biol 18(21):1700–1706CrossRefGoogle Scholar
  20. Hu H, Goltsov A, Bown JL, Sims AH, Langdon SP, Harrison DJ, Faratian D (2013) Feedforward and feedback regulation of the MAPK and PI3K oscillatory circuit in breast cancer. Cell Signal 25(1):26–32CrossRefGoogle Scholar
  21. Ingalls BP (2004) Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. Syst Biol 1(1):62–70MathSciNetCrossRefGoogle Scholar
  22. Ingalls B, Mincheva M, Roussel MR (2017) Parametric sensitivity analysis of oscillatory delay systems with an application to gene regulation. Bull Math Biol 79(7):1539–1563MathSciNetCrossRefzbMATHGoogle Scholar
  23. Johnston MD (2014) Translated chemical reaction networks. Bull Math Biol 76(6):1081–1116MathSciNetCrossRefzbMATHGoogle Scholar
  24. Johnston MD, Müller S, Pantea C (2018) A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems. Preprint. arXiv:1805.09295
  25. Liu WM (1994) Criterion of Hopf bifurcations without using eigenvalues. J Math Anal Appl 182(1):250–256MathSciNetCrossRefzbMATHGoogle Scholar
  26. Lozada-Cruz G (2012) The simple application of the implicit function theorem, vol XIX, no 1. Boletin de la Asociatión Matemática VenezolanaGoogle Scholar
  27. Millán MP, Dickenstein A (2018) The structure of MESSI biological systems. SIAM J Appl Dyn Syst 17(2):1650–1682MathSciNetCrossRefzbMATHGoogle Scholar
  28. Millán MP, Turjanski AG (2015) MAPK’s networks and their capacity for multistationarity due to toric steady states. Math Biosci 262:125–137MathSciNetCrossRefzbMATHGoogle Scholar
  29. Millán MP, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bull Math Biol 74(5):1027–1065MathSciNetCrossRefzbMATHGoogle Scholar
  30. Müller S, Feliu E, Regensburger G, Conradi C, Shiu A, Dickenstein A (2016) Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found Comput Math 16(1):69–97MathSciNetCrossRefzbMATHGoogle Scholar
  31. Ode KL, Ueda HR (2017) Design principles of phosphorylation-dependent timekeeping in eukaryotic circadian clocks. Cold Spring Harb Perspect Biol 10:a028357CrossRefGoogle Scholar
  32. Rao S (2017) Global stability of a class of futile cycles. J Math Biol 74:709–726MathSciNetCrossRefzbMATHGoogle Scholar
  33. Rao S (2018) Stability analysis of the Michaelis-Menten approximation of a mixed mechanism of a phosphorylation system. Math Biosci 301:159–166MathSciNetCrossRefzbMATHGoogle Scholar
  34. Rubinstein BY, Mattingly HH, Berezhkovskii AM, Shvartsman SY (2016) Long-term dynamics of multisite phosphorylation. Mol Biol Cell 27(14):2331–2340CrossRefGoogle Scholar
  35. Salazar C, Höfer T (2009) Multisite protein phosphorylation—from molecular mechanisms to kinetic models. FEBS J 276(12):3177–3198CrossRefGoogle Scholar
  36. Suwanmajo T, Krishnan J (2015) Mixed mechanisms of multi-site phosphorylation. J R Soc Interface 12(107):20141405CrossRefGoogle Scholar
  37. Thomson M, Gunawardena J (2009) The rational parameterisation theorem for multisite post-translational modification systems. J Theor Biol 261(4):626–636MathSciNetCrossRefzbMATHGoogle Scholar
  38. Tung H-R (2018) Precluding oscillations in Michaelis-Menten approximations of dual-site phosphorylation systems. Math Biosci 306:56–59MathSciNetCrossRefzbMATHGoogle Scholar
  39. Virshup DM, Forger DB (2009) Keeping the beat in the rising heat. Cell 137(4):602–604Google Scholar
  40. Wolfram Research Inc. (2018) Mathematica, Version 11.3, Champaign, ILGoogle Scholar
  41. Yang X (2002) Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order. Appl Math Lett 15(5):615–621MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.HTW BerlinBerlinGermany
  2. 2.Northern Illinois UniversityDeKalbUSA
  3. 3.Texas A&M UniversityCollege StationUSA

Personalised recommendations