Advertisement

Bulletin of Mathematical Biology

, Volume 80, Issue 6, pp 1630–1654 | Cite as

How Stochasticity Influences Leading Indicators of Critical Transitions

  • Suzanne M. O’ReganEmail author
  • Danielle L. Burton
Original Article

Abstract

Many complex systems exhibit critical transitions. Of considerable interest are bifurcations, small smooth changes in underlying drivers that produce abrupt shifts in system state. Before reaching the bifurcation point, the system gradually loses stability (‘critical slowing down’). Signals of critical slowing down may be detected through measurement of summary statistics, but how extrinsic and intrinsic noises influence statistical patterns prior to a transition is unclear. Here, we consider a range of stochastic models that exhibit transcritical, saddle-node and pitchfork bifurcations. Noise was assumed to be either intrinsic or extrinsic. We derived expressions for the stationary variance, autocorrelation and power spectrum for all cases. Trends in summary statistics signaling the approach of each bifurcation depend on the form of noise. For example, models with intrinsic stochasticity may predict an increase in or a decline in variance as the bifurcation parameter changes, whereas models with extrinsic noise applied additively predict an increase in variance. The ability to classify trends of summary statistics for a broad class of models enhances our understanding of how critical slowing down manifests in complex systems approaching a transition.

Keywords

Critical transitions Bifurcations Demographic stochasticity Environmental stochasticity Early warning signals Additive noise Multiplicative noise 

Notes

Acknowledgements

Much of this work was conducted while SMO was a Postdoctoral Fellow and DLB was a Graduate Research Assistant at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award # DBI-1300426, with additional support from The University of Tennessee, Knoxville. Additional support was obtained from North Carolina A&T State University. The authors would like to thank John Drake, Eamon O’Dea, Suzanne Lenhart and an anonymous reviewer for thoughtful comments on the manuscript.

References

  1. Allen EJ (2007) Modeling with Itô stochastic differential equations. Springer, DordrechtzbMATHGoogle Scholar
  2. Allen LJS (2003) An introduction to stochastic processes with applications to biology. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  3. Arnold L (1998) Random dynamical systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  4. Bauch CT, Sigdel R, Pharaon J, Anand M (2016) Early warning signals of regime shifts in coupled human–environment systems. Proc Natl Acad Sci USA 113(51):14560–14567CrossRefGoogle Scholar
  5. Boerlijst MC, Oudman T, de Roos AM (2013) Catastrophic collapse can occur without early warning: examples of silent catastrophes in structured ecological models. PLoS ONE 8(4):e62033.  https://doi.org/10.1371/journal.pone.0062033 CrossRefGoogle Scholar
  6. Boettiger C, Hastings A (2012) Quantifying limits to detection of early warning for critical transitions. J R Soc Interface 9(75):2527–2539.  https://doi.org/10.1098/rsif.2012.0125 CrossRefGoogle Scholar
  7. Brett TS, Drake JM, Rohani P (2017) Anticipating the emergence of infectious diseases. J R Soc Interface 14(132):20170115CrossRefGoogle Scholar
  8. Carpenter SR, Brock WA (2006) Rising variance: a leading indicator of ecological transition. Ecol Lett 9(3):311–318CrossRefGoogle Scholar
  9. Carpenter SR, Ludwig D, Brock WA (1999) Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9(3):751.  https://doi.org/10.2307/2641327 CrossRefGoogle Scholar
  10. Dai L, Korolev KS, Gore J (2013) Slower recovery in space before collapse of connected populations. Nature 496(7445):355–8.  https://doi.org/10.1038/nature12071 CrossRefGoogle Scholar
  11. Dakos V, van Nes EH, D’Odorico P, Scheffer M (2012a) Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93:264–271CrossRefGoogle Scholar
  12. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kefi S, Livina V, Seekell DA, van Nes EH, Scheffer M (2012b) Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7:e41010.  https://doi.org/10.1371/journal.pone.0041010 CrossRefGoogle Scholar
  13. Dakos V, van Nes EH, Scheffer M (2013) Flickering as an early warning signal. Theor Ecol 6(3):309–317.  https://doi.org/10.1007/s12080-013-0186-4 CrossRefGoogle Scholar
  14. Ditlevsen PD, Johnsen SJ (2010) Tipping points: early warning and wishful thinking. Geophys Res Lett.  https://doi.org/10.1029/2010GL044486 Google Scholar
  15. Drake JM, Hay SI (2017) Monitoring the path to the elimination of infectious diseases. Trop Med Infect Dis 2(3):20CrossRefGoogle Scholar
  16. Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31:53–98MathSciNetCrossRefzbMATHGoogle Scholar
  17. Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer, BerlinCrossRefzbMATHGoogle Scholar
  18. Gillespie DT (2009) Deterministic limit of stochastic chemical kinetics. J Phys Chem B 113(6):1640–4.  https://doi.org/10.1021/jp806431b CrossRefGoogle Scholar
  19. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, applied mathematical sciences, vol 42. Springer, New YorkCrossRefzbMATHGoogle Scholar
  20. Han BA, Drake JM (2016) Future directions in analytics for infectious disease intelligence. EMBO Rep 17(6):785–789CrossRefGoogle Scholar
  21. Holling CS (1996) Engineering resilience versus ecological resilience. In: Schulze PC (ed) Engineering within ecological constraints. National Academy of Sciences, Washington, pp 31–44.  https://doi.org/10.17226/4919. arXiv:1011.1669v3
  22. Ives AR, Dakos V (2012) Detecting dynamical changes in nonlinear time series using locally linear state-space models. Ecosphere.  https://doi.org/10.1890/ES11-00347.1 Google Scholar
  23. Ives AR, Dennis B, Cottingham KL, Carpenter SR (2003) Estimating community stability and ecological interactions from time series data. Ecol Monogr 73(2):301–330.  https://doi.org/10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2 CrossRefGoogle Scholar
  24. Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Ma D, Bennett M, Aldrich S, Harrington T, Formenty P, Loh EH, Machalaba CC, Thomas MJ, Heymann DL (2012) Ecology of zoonoses: natural and unnatural histories. Lancet 380(9857):1936–45CrossRefGoogle Scholar
  25. Keeling M, Grenfell B (1999) Stochastic dynamics and a power law for measles variability. Philos Trans R Soc B Biol Sci 354(1384):769–776.  https://doi.org/10.1098/rstb.1999.0429 CrossRefGoogle Scholar
  26. Keeling MJ (2000) Simple stochastic models and their power-law type behaviour. Theor Popul Biol 58(1):21–31.  https://doi.org/10.1006/tpbi.2000.1475 MathSciNetCrossRefzbMATHGoogle Scholar
  27. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, PrincetonzbMATHGoogle Scholar
  28. Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM, Livina VN, Seekell DA, Scheffer M, van Nes EH, Dakos V (2014) Early warning signals of ecological transitions: methods for spatial patterns. PloS ONE 9(3):e92097.  https://doi.org/10.1371/journal.pone.0092097 CrossRefGoogle Scholar
  29. Kuehn C (2011) A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240:1020–1035CrossRefzbMATHGoogle Scholar
  30. Lade SJ, Gross T (2012) Early warning signals for critical transitions: a generalized modeling approach. PLoS Comput Biol 8(2):e1002360.  https://doi.org/10.1371/journal.pcbi.1002360 CrossRefGoogle Scholar
  31. Lenton TM (2011) Early warning of climate tipping points. Nat Clim Change 1:201–209CrossRefGoogle Scholar
  32. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105(6):1786–93CrossRefzbMATHGoogle Scholar
  33. Lever JJ, van Nes EH, Scheffer M, Bascompte J (2014) The sudden collapse of pollinator communities. Ecol Lett 17(3):350–359CrossRefGoogle Scholar
  34. Ludwig D, Jones DD, Holling CS (1978) Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J Anim Ecol 47(1):315–332.  https://doi.org/10.2307/3939 CrossRefGoogle Scholar
  35. Meiss JD (2007) Differential dynamical systems. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefzbMATHGoogle Scholar
  36. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454(7200):100–103.  https://doi.org/10.1038/nature06922 CrossRefGoogle Scholar
  37. Nicolis C, Nicolis G (2014) Dynamical responses to time-dependent control parameters in the presence of noise: a normal form approach. Phys Rev E 89(2):022903.  https://doi.org/10.1103/PhysRevE.89.022903 CrossRefGoogle Scholar
  38. Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, New YorkzbMATHGoogle Scholar
  39. O’Regan SM, Drake JM (2013) Theory of early warning signals of disease emergence and leading indicators of elimination. Theor Ecol 6(3):333–357.  https://doi.org/10.1007/s12080-013-0185-5 CrossRefGoogle Scholar
  40. O’Regan SM, Lillie JW, Drake JM (2016) Leading indicators of mosquito-borne disease elimination. Theor Ecol 9(3):269–286.  https://doi.org/10.1007/s12080-015-0285-5 CrossRefGoogle Scholar
  41. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326.  https://doi.org/10.1038/315635c0. arXiv:1011.1669v3
  42. Quail T, Shrier A, Glass L (2015) Predicting the onset of period-doubling bifurcations in noisy cardiac systems. Proc Natl Acad Sci USA 112(30):9358–63.  https://doi.org/10.1073/pnas.1424320112 CrossRefGoogle Scholar
  43. Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, PrincetonGoogle Scholar
  44. Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evolut 8(8):275–279CrossRefGoogle Scholar
  45. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early warning signals for critical transitions. Nature 461:53–59CrossRefGoogle Scholar
  46. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348CrossRefGoogle Scholar
  47. Sharma Y, Abbott KC, Dutta PS, Gupta AK (2014) Stochasticity and bistability in insect outbreak dynamics. Theor Ecol 8(2):163–174.  https://doi.org/10.1007/s12080-014-0241-9 CrossRefGoogle Scholar
  48. Strogatz SH (1994) Nonlinear dynamics and chaos with applications to physics, biology chemistry and engineering. Addison-Wesley, ReadingzbMATHGoogle Scholar
  49. Trefois C, Antony PM, Goncalves J, Skupin A, Balling R (2015) Critical transitions in chronic disease: transferring concepts from ecology to systems medicine. Curr Opin Biotechnol 34:48–55.  https://doi.org/10.1016/j.copbio.2014.11.020 CrossRefGoogle Scholar
  50. van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169(6):738–747.  https://doi.org/10.1086/516845 CrossRefGoogle Scholar
  51. Veraart AJ, Faassen EJ, Dakos V, van Nes EH, Lürling M, Scheffer M (2012) Recovery rates reflect distance to a tipping point in a living system. Nature 481(7381):357–359.  https://doi.org/10.1038/nature10723 CrossRefGoogle Scholar
  52. Wang R, Ja D, Langdon PG, Zhang E, Yang X, Dakos V, Scheffer M (2012) Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492(7429):419–22.  https://doi.org/10.1038/nature11655 CrossRefGoogle Scholar
  53. Wissel C (1984) A universal law of the characteristic return time near thresholds. Oecologia 65(1):101–107.  https://doi.org/10.1007/BF00384470 CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  1. 1.Department of MathematicsNorth Carolina A&T State UniversityGreensboroUSA
  2. 2.National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations