Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity

  • Rocio Caja Rivera
  • Ignacio Barradas
Special Issue: Mathematical Epidemiology


We propose and analyze a mathematical model of a vector-borne disease that includes vector feeding preference for carrier hosts and intrinsic incubation in hosts. Analysis of the model reveals the following novel results. We show theoretically and numerically that vector feeding preference for carrier hosts plays an important role for the existence of both the endemic equilibria and backward bifurcation when the basic reproduction number \({\mathcal {R}}_0\) is less than one. Moreover, by increasing the vector feeding preference value, backward bifurcation is eliminated and endemic equilibria for hosts and vectors are diminished. Therefore, the vector protects itself and this benefits the host. As an example of these phenomena, we present a case of Andean cutaneous leishmaniasis in Peru. We use parameter values from previous studies, primarily from Peru to introduce bifurcation diagrams and compute global sensitivity of \({\mathcal {R}}_0\) in order to quantify and understand the effects of the important parameters of our model. Global sensitivity analysis via partial rank correlation coefficient shows that \({\mathcal {R}}_0\) is highly sensitive to both sandflies feeding preference and mortality rate of sandflies.


Vector-borne disease Feeding preference Backward bifurcation Cutaneous leishmaniasis Global sensitivity analysis 



Rocío Marilyn Caja Rivera acknowledges fruitful conversations to Dr. Linda Allen (TEXAS TECH UNIVERSITY), Dr. Abraham Cáceres (UNMSM-PERU), Dr. Sergio Ibañez (INECOL-MEXICO) and she expresses gratefulness to anonymous reviewers for careful reading and valuable comments to this research.


  1. Abboubakar H, Buonomo B, Chitnis N (2016) Modelling the effects of malaria infection on mosquito biting behaviour and attractiveness of humans. Ricerche di matematica 65(1):329–346MathSciNetCrossRefzbMATHGoogle Scholar
  2. Barradas I, Caja Rivera RM (2018) Cutaneous leishmaniasis in Peru using a vector-host model: backward bifurcation and sensitivity analysis. Math Methods Appl Sci 41:1908–1924MathSciNetCrossRefzbMATHGoogle Scholar
  3. Biswas D, Datta A, Roy PK (2016a) Combating leishmaniasis through awareness campaigning: a mathematical study on media efficiency. Int J Math Eng Manag Sci 1(3):139–149Google Scholar
  4. Biswas D, Roy PK, Li XZ, Basir FA, Pal J (2016b) Role of macrophage in the disease dynamics of cutaneous Leishmaniasis: a delay induced mathematical study. Commun Math Biol Neurosci, Article ID, p 4Google Scholar
  5. Biswas D, Kesh DK, Datta A, Chatterjee AN, Roy PK (2014) A mathematical approach to control cutaneous leishmaniasis through insecticide spraying. Sop Trans Appl Math 1(2):44–54CrossRefGoogle Scholar
  6. Buonomo B, Vargas-De-Leon C (2013) Stability and bifurcation analysis of a vector-bias model of malaria transmission. Math Biosci 242(1):59–67MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cáceres AG et al (2004) Epidemiology of Andean cutaneous leishmaniasis: incrimination of Lutzomyia ayacuchensis (Diptera: Psychodidae) as a vector of Leishmania in geographically isolated, upland valleys of Peru. Am J Trop Med Hyg 70(6):607–612CrossRefGoogle Scholar
  8. Caja R (2018) Control policies and vector behavioral effects in modeling vector–host interactions: novel applications for cutaneous leishmaniasis in Peru. Ph.D. thesis, CIMAT, Research Center in Mathematics at Guanajuato-Mexico, Department of MathematicsGoogle Scholar
  9. Castillo-Chavez BS (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361–404MathSciNetCrossRefzbMATHGoogle Scholar
  10. C.D.C. (Center for Disease Control and Prevention) (2013) Parasites-leishmaniasisGoogle Scholar
  11. Chamchod F, Britton NF (2011) Analysis of a vector-bias model on malaria transmission. Bull Math Biol 73(3):639–657MathSciNetCrossRefzbMATHGoogle Scholar
  12. Coleman RE, Edman JD (1988) Feeding-site selection of Lutzomyia longipalpis (Diptera: Psychodidae) on mice infected with Leishmania mexicana amazonensis. J Med Entomol 25(4):229–233CrossRefGoogle Scholar
  13. Diekmann O, Heesterbeek JAP, Metz JA (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382MathSciNetCrossRefzbMATHGoogle Scholar
  14. Dujardin JC, Llanos-Cuentas A, Caceres A, Arana M, Dujardin JP, Guerrini F, Hamers R (1993) Molecular karyotype variation in Leishmania (Viannia) peruviana: indication of geographical populations in Peru distributed along a north-south cline. Ann Trop Med Parasitol 87(4):335–347CrossRefGoogle Scholar
  15. Dushoff J, Huang W, Castillo-Chavez C (1998) Backwards bifurcations and catastrophe in simple models of fatal diseases. J Math Biol 36(3):227–248MathSciNetCrossRefzbMATHGoogle Scholar
  16. INEI (Peruvian National Institute of Statistics and Informatics). Peruvian population 1995–2015Google Scholar
  17. Knols BG, Meuerink J (1997) Odors influence mosquito behavior. Sci Med 4:56–63Google Scholar
  18. Koella JC et al (1998) The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc R Soc Lond B Biol Sci 265(1398):763–768CrossRefGoogle Scholar
  19. Lainson R, Shaw JJ (1978) Epidemiology and ecology of leishmaniasis in Latin-America. Nature 273:595–600CrossRefGoogle Scholar
  20. Lemon, Stanley M et al (2008) Vector-borne diseases: understanding the environmental, human health, and ecological connections. Workshop summary. En Vector-borne diseases: understanding the environmental, human health, and ecological connections. Workshop summary. National Academies PressGoogle Scholar
  21. Leonardo S et al (2004) Leishmaniasis. Peruvian. J Dermatol 14(2):82–98Google Scholar
  22. Lyimo IN, Ferguson HM (2009) Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol 25(4):189–196CrossRefGoogle Scholar
  23. Llanos-Cuentas EA, Davies CR, Pyke SDM, Dye C (1995) Cutaneous leishmaniasis in the Peruvian Andes: an epidemiological study of infection and immunity. Epidemiol Infect 114(02):297–318CrossRefGoogle Scholar
  24. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theoret Biol 254(1):178–196MathSciNetCrossRefzbMATHGoogle Scholar
  25. Ministry of Health of Peru (MINSA) (2015) Bulletin of Epidemiology 2013, 2014, 2015Google Scholar
  26. McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245MathSciNetzbMATHGoogle Scholar
  27. Moore J (1995) The behavior of parasitized animals. Bioscience 45(2):89–96CrossRefGoogle Scholar
  28. Mubayi A, Gorahava KK, Rosenberger JM (2015) Optimizing insecticide allocation strategies based on houses and livestock shelters for visceral leishmaniasis control in Bihar, India. Am J Trop Med Hygiene 93(1):114–122CrossRefGoogle Scholar
  29. ORegan SM, Lillie JW, Drake JM (2016) Leading indicators of mosquito-borne disease elimination. Theor Ecol 9(3):269–286CrossRefGoogle Scholar
  30. O’Shea B, Rebollar-Tellez E, Ward RD, Hamilton JGC, El Naiem D, Polwart A (2002) Enhanced sandfly attraction to Leishmania-infected hosts. Trans R Soc Trop Med Hyg 96(2):117–118CrossRefGoogle Scholar
  31. Pan American Health Organization-World Health Organization (2014) Leishmaniasis: small bites big threatsGoogle Scholar
  32. Pedro SA, Tonnang HEZ, Abelman S (2016) Uncertainty and sensitivity analysis of a Rift Valley fever model. Appl Math Comput 279:170–186MathSciNetGoogle Scholar
  33. Pérez JE, Ogusuku E, Inga R, Lopez M, Monje J, Paz L, Guerra H (1994) Natural Leishmania infection of Lutzomyia spp. in Peru. Trans R Soc Trop Med Hyg 88(2):161–164CrossRefGoogle Scholar
  34. Penn D, Potts WK (1998) Chemical signals and parasite-mediated sexual selection. Trends Ecol Evolut 13(10):391–396CrossRefGoogle Scholar
  35. Rabinovich JE, Feliciangeli MD (2004) Parameters of Leishmania braziliensis transmission by indoor Lutzomyia ovallesi in Venezuela. Am J Trop Med Hyg 70(4):373–382CrossRefGoogle Scholar
  36. Rogers ME, Bates PA (2007) Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. PLoS Pathog 3(6):818–826CrossRefGoogle Scholar
  37. Takken W, Verhulst NO (2013) Host preferences of blood-feeding mosquitoes. Annu Review Entomol 58:433–453CrossRefGoogle Scholar
  38. The Center for Food Security and Public Health (2009) Leishmaniasis (Cutaneous and Visceral)Google Scholar
  39. Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48MathSciNetCrossRefzbMATHGoogle Scholar
  40. Villaseca P, Llanos-Cuentas A, Perez E (1993) A comparative field study of the relative importance of Lutzomyia peruensis and Lutzomyia verrucarum as vectors of cutaneous leishmaniasis in the Peruvian Andes. Am J Trop Med Hyg 49(2):260–269CrossRefGoogle Scholar
  41. Villavicencio Pulido G, Barradas I, Luna B (2016) Backward bifurcation for some general recovery functions. Mathematical methods in the applied sciences. Addison-Wesley, BostonzbMATHGoogle Scholar
  42. Votypka J, Pruzinova K, Hlavacova J, Volf P (2015) The effect of temperature and avian blood on Leishmania development in sand flies bulletin of SEA, vol 26Google Scholar
  43. W.H.O. (2016) Vector-borne diseases.
  44. Zheng Y, Rundell A (2006) Comparative study of parameter sensitivity analyses of the TCR-activated Erk-MAPK signalling pathway. IEE Proc Syst Biol 153(4):201–211CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Centro de Investigación en Matemáticas, A.C. (CIMAT)GuanajuatoMexico

Personalised recommendations