Advertisement

Genotypic Selection in Spatially Heterogeneous Producer-Grazer Systems Subject to Stoichiometric Constraints

  • Chandani Dissanayake
  • Lourdes JuanEmail author
  • Kevin R. Long
  • Angela Peace
  • Md Masud Rana
Special Issue: Modelling Biological Evolution: Developing Novel Approaches
  • 49 Downloads

Abstract

Various environmental conditions may exert selection pressures leading to adaptation of stoichiometrically important traits, such as organismal nutritional content or growth rate. We use theoretical approaches to explore the connections between genotypic selection and ecological stoichiometry in spatially heterogeneous environments. We present models of a producer and two grazing genotypes with different stoichiometric phosphorus/carbon ratios under spatially homogenous and heterogeneous conditions. Numerical experiments predict that selection of a single genotype, co-persistence of both genotypes, and extinction are possible outcomes depending on environmental conditions. Our results indicated that in spatially homogenous settings, co-persistence of both genotypes can occur when population dynamics oscillate on limit cycles near a key stoichiometric threshold on food quality. Under spatially heterogeneous settings, dynamics are more complex, where co-persistence is observed on limit cycles, as well as stable equilibria.

Keywords

Genotypic selection Ecological stoichiometry Diffusion Population dynamics 

Mathematics Subject Classification

92D15 92D25 

Notes

Supplementary material

Supplementary material 1 (mp4 10700 KB)

Supplementary material 2 (mp4 10237 KB)

Supplementary material 3 (mp4 11373 KB)

Supplementary material 4 (mp4 9422 KB)

Supplementary material 5 (mp4 11295 KB)

Supplementary material 6 (mp4 6742 KB)

References

  1. Abrams PA (2000) The evolution of predator-prey interactions: theory and evidence. Ann Rev Ecol Syst 31(1):79–105MathSciNetCrossRefGoogle Scholar
  2. Andersen T (1997) Pelagic nutrient cycles; herbivores as sources and sinks. Springer, BerlinCrossRefGoogle Scholar
  3. Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7(9):884–900CrossRefGoogle Scholar
  4. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations, vol 61. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  5. Barry RG, Chorley RJ (2003) Atmosphere. Weather and climate. Routledge, LondonGoogle Scholar
  6. Bird RB, Stewart WE, Lightfoot EN (2004) Transport phenomena. 2002. Wiley, New YorkGoogle Scholar
  7. Cantrell RS, Cosner C, Lou Y (2010a) Evolution of dispersal in heterogeneous landscapes. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Taylor & Francis Group, pp 213–229Google Scholar
  8. Cantrell S, Cosner C, Ruan S (2010b) Spatial Ecology. CRC Press, Taylor & Francis GroupGoogle Scholar
  9. Dissanayake C (2016) Finite element simulation of space/time behavior in a two species ecological stoichiometric model. Ph.D. thesis, Texas Tech UniversityGoogle Scholar
  10. Elser J (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168(S6):S25–S35CrossRefGoogle Scholar
  11. Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Volume 1: advection–diffusion and isothermal laminar flow. Wiley, New YorkzbMATHGoogle Scholar
  12. Grover JP (2004) Predation, competition, and nutrient recycling: a stoichiometric approach with multiple nutrients. J Theor Biol 229(1):31–43MathSciNetCrossRefGoogle Scholar
  13. Hanski I (2010) Incorporating the spatial configuration of the habitat into ecology and evolutionary biology. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Taylor & Francis Group, pp 167–188Google Scholar
  14. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the Trilinos project. ACM Trans Math Softw 31(3):397–423.  https://doi.org/10.1145/1089014.1089021 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) Ecological stoichiometry: an elementary approach using basic principles. Limnol Oceanogr 58(6):2219–2236CrossRefGoogle Scholar
  16. Holt RD, Barfield M (2010) Metapopulation perspectives on the evolution of species’ niches. In: Cantrell S, Cosner C, Ruan S (eds) Spatial Ecology. CRC Press, Taylor & Francis Group, pp 188–211Google Scholar
  17. Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JM, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85(11):2960–2970CrossRefGoogle Scholar
  18. Imboden DM, Wüest A (1995) Mixing mechanisms in lakes. Physics and chemistry of lakes. Springer, Berlin, pp 83–138CrossRefGoogle Scholar
  19. Johnson C (2012) Numerical solution of partial differential equations by the finite element method. Courier CorporationGoogle Scholar
  20. Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005) Toward a stoichiometric framework for evolutionary biology. Oikos 109(1):6–17CrossRefGoogle Scholar
  21. Kelley CT (2003) Solving nonlinear equations with Newton’s method. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  22. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Kuefler D, Avgar T, Fryxell JM (2012) Rotifer population spread in relation to food, density and predation risk in an experimental system. J Anim Ecol 81(2):323–329CrossRefGoogle Scholar
  24. Kuefler D, Avgar T, Fryxell JM (2013) Density-and resource-dependent movement characteristics in a rotifer. Funct Ecol 27(2):323–328CrossRefGoogle Scholar
  25. Loladze I, Kuang Y, Elser JJ (2000) Stoichiometry in producer-grazer systems: linking energy flow with element cycling. Bull Math Biol 62(6):1137–1162CrossRefzbMATHGoogle Scholar
  26. Loladze I, Kuang Y, Elser JJ, Fagan WF (2004) Competition and stoichiometry: coexistence of two predators on one prey. Theor Popul Biol 65(1):1–15CrossRefzbMATHGoogle Scholar
  27. Long K, Kirby R, van Bloemen Waanders B (2010) Unified embedded parallel finite element computations via software-based Fréchet differentiation. SIAM J Sci Comput 32(6):3323–3351MathSciNetCrossRefzbMATHGoogle Scholar
  28. Lorke A (1998) Investigation of turbulent mixing in shallow lakes using temperature microstructure measurements. Aquat Sci Res Across Bound 60(3):210–219CrossRefGoogle Scholar
  29. Meng X, Zhang L (2016) Evolutionary dynamics in a Lotka–Volterra competition model with impulsive periodic disturbance. Math Methods Appl Sci 39(2):177–188MathSciNetCrossRefzbMATHGoogle Scholar
  30. Metz JA, Nisbet RM, Geritz SA (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol 7(6):198–202CrossRefGoogle Scholar
  31. Moody EK, Rugenski AT, Sabo JL, Turner BL, Elser JJ (2017) Does the growth rate hypothesis apply across temperatures? variation in the growth rate and body phosphorus of neotropical benthic grazers. Front Environ Sci 5:14CrossRefGoogle Scholar
  32. Morozov A, Kuzenkov O (2016) Towards developing a general framework for modelling vertical migration in zooplankton. J Theor Biol 405:17–28MathSciNetCrossRefzbMATHGoogle Scholar
  33. Peace A (2015) Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models. Ecol Model 312:125–135CrossRefGoogle Scholar
  34. Peace A, Zhao Y, Loladze I, Elser JJ, Kuang Y (2013) A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics. Math Biosci 244:107MathSciNetCrossRefzbMATHGoogle Scholar
  35. Peace A, Wang H, Kuang Y (2014) Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer’s growth. Bull Math Biol 76(9):2175–2197MathSciNetCrossRefzbMATHGoogle Scholar
  36. Rana M, Dissanayake C, Juan L, Long K, Peace A (2019) Mechanistically derived heterogeneous producer-grazer model, subject to stoichiometric constraints. Math Biosci Engg 16(1):222–233.  https://doi.org/10.3934/mbe.2019012 CrossRefGoogle Scholar
  37. Sala M, Stanley K, Heroux M (2006) Amesos: a set of general interfaces to sparse direct solver libraries. In: Proceedings of PARA’06 conference, Umea, SwedenGoogle Scholar
  38. Shu FH (1991) The physics of astrophysics, vol. 2: radiation. University Science Books, Mill ValleyGoogle Scholar
  39. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  40. Wang H, Kuang Y, Loladze I (2008) Dynamics of a mechanistically derived stoichiometric producer-grazer model. J Biol Dyn 2(3):286–296MathSciNetCrossRefzbMATHGoogle Scholar
  41. Wang H, Sterner RW, Elser JJ (2012) On the “strict homeostasis” assumption in ecological stoichiometry. Ecol Model 243:81–88CrossRefGoogle Scholar
  42. Weider LJ, Makino W, Acharya K, Glenn KL, Kyle M, Urabe J, Elser JJ (2005) Genotype \(\times \) environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex. Oecologia 143(4):537–547CrossRefGoogle Scholar
  43. Yamamichi M, Meunier CL, Peace A, Prater C, Rúa MA (2015) Rapid evolution of a consumer stoichiometric trait destabilizes consumer–producer dynamics. Oikos 124(7):960–969CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA
  2. 2.Sri Lanka Technological CampusColomboSri Lanka

Personalised recommendations