Advertisement

Perspectives on the Role of Mathematics in Drug Discovery and Development

  • Richard AllenEmail author
  • Helen Moore
Special Issue: Mathematics to Support Drug Discovery and Development
  • 35 Downloads

Abstract

The goals of this article and special issue are to highlight the value of mathematical biology approaches in industry, help foster future interactions, and suggest ways for mathematics Ph.D. students and postdocs to move into industry careers. We include a candid examination of the advantages and challenges of doing mathematics in the biopharma industry, a broad overview of the types of mathematics being applied, information about academic collaborations, and career advice for those looking to move from academia to industry (including graduating Ph.D. students).

Keywords

Pharmacometrics Biotechnology and pharmaceutical (biopharma) Industry careers 

References

  1. Allen RJ, Rieger TR, Musante CJ (2016) Efficient generation and selection of virtual populations in quantitative systems pharmacology models. CPT Pharmacomet Syst Pharmacol 5(3):140–146.  https://doi.org/10.1002/psp4.12063 CrossRefGoogle Scholar
  2. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ (eds) (2017) NONMEM 7.4 users guides. ICON plc, Gaithersburg, Maryland, USA. https://nonmem.iconplc.com/nonmem743/guides
  3. Berry SM, Carlin BP, Jack Lee J, Müller P (2010) Bayesian adaptive methods for clinical trials. Chapman & Hall/CRC, Boca RatonCrossRefzbMATHGoogle Scholar
  4. Bonate PL (2011) Pharmacokinetic-pharmacodynamic modeling and simulation, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  6. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los AngelesGoogle Scholar
  7. Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. CRC Press, Boca RatonGoogle Scholar
  8. Dawood Z, Coudray N, Kim RH, Nomikou S, Moran U, Weber JS, Pavlick AC, Wilson M, Tsirigos A, Osman I (2018) Prediction of response and toxicity to immune checkpoint inhibitor therapies (ICI) in melanoma using deep neural networks machine learning. J Clin Oncol.  https://doi.org/10.1200/jco.2018.36.15_suppl.9529 Google Scholar
  9. Desmée S, Mentré F, Veyrat-Follet C, Sébastien B, Guedj J (2017) Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer. BMC Med Res Methodol 17:105.  https://doi.org/10.1186/s12874-017-0382-9 CrossRefzbMATHGoogle Scholar
  10. Friedrich C (2016) A model qualification method for mechanistic physiological QSP models to support model-informed drug development. CPT Pharmcomet Syst Pharmacol 5(2):43–53.  https://doi.org/10.1002/psp4.12056 MathSciNetCrossRefGoogle Scholar
  11. Gabrielsson J, Weiner D (2017) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, 5th edn. Swedish Pharmaceutical Press, StockholmGoogle Scholar
  12. Gelman A, Lee D, Guo J (2015) Stan: a probabilistic programming language for Bayesian inference and optimization. J Educ Behav Stat 40(5):530–543.  https://doi.org/10.3102/1076998615606113 CrossRefGoogle Scholar
  13. Gronsbell J, Minnier J, Sheng Yu, Liao K, Cai T (2018) Automated feature selection of predictors in electronic medical records data. Biometrics.  https://doi.org/10.1111/biom.12987 Google Scholar
  14. Kadir T, Gleeson F (2018) Lung cancer prediction using machine learning and advanced imaging techniques. Transl Lung Cancer Res 7(3):304–312CrossRefGoogle Scholar
  15. Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall/CRC, Boca RatonzbMATHGoogle Scholar
  16. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46(3):673–687MathSciNetCrossRefGoogle Scholar
  17. Martin R, Teo KL (1994) Optimal control of drug administration in cancer chemotherapy. World Scientific, SingaporezbMATHGoogle Scholar
  18. MATLAB (2018b) The MathWorks, Inc, NatickGoogle Scholar
  19. Mentré F, Mallet A, Baccar D (1997) Optimal design in random-effects regression models. Biometrika 84(2):429–442.  https://doi.org/10.1093/biomet/84.2.429 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Monolix version 2018R1 (2018) Antony, France: Lixoft SAS. http://lixoft.com/products/monolix/
  21. Moore H (2018) How to mathematically optimize drug regimens using optimal control. J Pharmacokinet Pharmacodyn 45(1): 127–137.  https://doi.org/10.1007/s10928-018-9568-y
  22. Mould DR, Upton RN (2012) Basic concepts in population modeling, simulation, and model‐based drug development. CPT Pharmacomet Syst Pharmacol 1:e6. http://www.nature.com/doifinder/10.1038/psp.2012.4
  23. Mould DR, Upton RN (2013) Basic concepts in population modeling, simulation, and model‐based drug development—part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacomet Syst Pharmacol 2:e38. http://www.nature.com/doifinder/10.1038/psp.2013.14
  24. Phoenix NLME 8.1 (2018) Certara, LP. St LouisGoogle Scholar
  25. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1-131.1. https://CRAN.R-project.org/package=nlme
  26. Pontryagin LS (1959) Optimal control processes II. Uspekhi Matematicheskikh Nauk 14:3–20 (in Russian) Google Scholar
  27. Rizopoulos D (2012) Joint models for longitudinal and time-to-event data with applications in R. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  28. Sager JE, Jingjing Yu, Ragueneau-Majlessi I, Isoherranen N (2015) Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos 43:1823–1837CrossRefGoogle Scholar
  29. Smith RC (2014) Uncertainty quantification. SIAM, PhiladelphiazbMATHGoogle Scholar
  30. Swan G (1984) Applications of optimal control theory in biomedicine. Marcel Dekker, New YorkzbMATHGoogle Scholar
  31. Wong CH, Siah KW, Lo AW (2018) Estimation of clinical trial success rates and related parameters. Biostatistics 14:14–19Google Scholar

Copyright information

© Society for Mathematical Biology 2019

Authors and Affiliations

  1. 1.Internal Medicine Research UnitPfizer IncCambridgeUSA
  2. 2.Oncology R&DAstraZenecaWalthamUSA

Personalised recommendations