Bulletin of Mathematical Biology

, Volume 79, Issue 10, pp 2242–2257 | Cite as

Healthcare-Associated Clostridium difficile Infections are Sustained by Disease from the Community

  • Angus McLure
  • Archie C. A. Clements
  • Martyn Kirk
  • Kathryn Glass
Original Article

Abstract

Clostridium difficile infections (CDIs) are some of the most common hospital-associated infections worldwide. Approximately 5% of the general population is colonised with the pathogen, but most are protected from disease by normal intestinal flora or immune responses to toxins. We developed a stochastic compartmental model of CDI in hospitals that captures the condition of the host’s gut flora and the role of adaptive immune responses. A novel, derivative-based method for sensitivity analysis of individual-level outcomes was developed and applied to the model. The model reproduced the observed incidence and recurrence rates for hospitals with high and moderate incidence of hospital-acquired CDI. In both scenarios, the reproduction number for within-hospital transmission was less than 1 (0.67 and 0.44, respectively), but the proportion colonised with C. difficile at discharge (7.3 and 6.1%, respectively) exceeded the proportion colonised at admission (5%). The transmission and prevalence of CDI were most sensitive to the average length of stay and the transmission rate of the pathogen. Recurrent infections were most strongly affected by the treatment success rate and the immune profile of patients. Transmission within hospitals is substantial and leads to a net export of colonised individuals to the broader community. However, within-hospital transmission alone is insufficient to sustain endemic conditions in hospitals without the constant importation of colonised individuals. Improved hygiene practices to reduce transmission from symptomatic and asymptomatic individuals and reduced length of stay are most likely to reduce within-hospital transmission and infections; however, these interventions are likely to have a smaller effect on the probability of recurrence. Immunising inpatients against the toxins produced by C. difficile will reduce the incidence of CDI but may increase transmission.

Keywords

Clostridium difficile Mathematical model Sensitivity analysis Nosocomial infection 

Notes

Acknowledgements

AM is supported by an Australian Government Research Training Program Scholarship. ACAC is funded by a National Health and Medical Council Research Fellowship (#1058878). We thank Luis Furuya-Kanamori for suggested reading and Thomas Riley for a valuable discussion.

Supplementary material

11538_2017_328_MOESM1_ESM.pdf (214 kb)
Supplementary material 1 (pdf 213 KB)

References

  1. 1.
    Anderson DF (2012) An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM J Numer Anal 50(5):2237–2258. doi: 10.1137/110849079 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Australian Institute of Health and Welfare (2015) Admitted patient care 201314: Australian hospital statistics. Technical report, Australian Institute of Health and Welfare, CanberraGoogle Scholar
  3. 3.
    Babcock GJ, Broering TJ, Hernandez HJ, Mandell RB, Donahue K, Boatright N, Stack AM, Lowy I, Graziano R, Molrine D, Ambrosino DM, Thomas WD (2006) Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect Immun 74(11):6339–6347. doi: 10.1128/IAI.00982-06 CrossRefGoogle Scholar
  4. 4.
    Bintz J, Lenhart S, Lanzas C (2017) Antimicrobial Stewardship and environmental decontamination for the control of Clostridium difficile transmission in healthcare settings. Bull Math Biol 79(1):36–62. doi: 10.1007/s11538-016-0224-7 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Britton RA, Young VB (2012) Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol 20(7):313–319. doi: 10.1016/j.tim.2012.04.001 CrossRefGoogle Scholar
  6. 6.
    Burckhardt F, Friedrich A, Beier D, Eckmanns T (2008) Clostridium difficile surveillance trends, Saxony, Germany. Emerg Infect Dis 14(4):691–692. doi: 10.3201/eid1404.071023 CrossRefGoogle Scholar
  7. 7.
    Codella J, Safdar N, Heffernan R, Alagoz O (2015) An agent-based simulation model for Clostridium difficile infection control. Med Decis Mak 35(2):211–229. doi: 10.1177/0272989X14545788 CrossRefGoogle Scholar
  8. 8.
    Dial S, Kezouh A, Dascal A, Barkun A, Suissa S (2008) Patterns of antibiotic use and risk of hospital admission because of Clostridium difficile infection. Can Med Assoc J 179(8):767–772. doi: 10.1503/cmaj.071812 CrossRefGoogle Scholar
  9. 9.
    Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7(47):873–885. doi: 10.1098/rsif.2009.0386 CrossRefGoogle Scholar
  10. 10.
    Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80(1):62–73. doi: 10.1128/IAI.05496-11 CrossRefGoogle Scholar
  11. 11.
    de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, Lefebvre G, Martens M, Mills RE, Nathan R, Trevino M, van Cleeff M, Foglia G, Ozol-Godfrey A, Patel DM, Pietrobon PJ, Gesser R (2016) Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: a randomized phase 2 clinical trial. Vaccine 34(19):2170–2178. doi: 10.1016/j.vaccine.2016.03.028 CrossRefGoogle Scholar
  12. 12.
    Dubberke ER, Olsen MA (2012) Burden of Clostridium difficile on the healthcare system. Clin Infect Dis 55(suppl 2):S88–S92. doi: 10.1093/cid/cis335 CrossRefGoogle Scholar
  13. 13.
    Durham DP, Olsen MA, Dubberke ER, Galvani AP, Townsend JP (2016) Quantifying transmission of Clostridium difficile within and outside healthcare settings. Emerg Infect Dis 22(4):608–616. doi: 10.3201/eid2204.150455 CrossRefGoogle Scholar
  14. 14.
    Eyre DW, Walker AS, Griffiths D, Wilcox MH, Wyllie DH, Dingle KE, Crook DW, Peto TEA (2012) Clostridium difficile mixed infection and reinfection. J Clin Microbiol 50(1):142–4. doi: 10.1128/JCM.05177-11 CrossRefGoogle Scholar
  15. 15.
    Figueroa I, Johnson S, Sambol SP, Goldstein EJC, Citron DM, Gerding DN (2012) Relapse versus reinfection: recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin Infect Dis 55(suppl 2):S104–S109. doi: 10.1093/cid/cis357 CrossRefGoogle Scholar
  16. 16.
    Foglia G, Shah S, Luxemburger C, Pietrobon PJF (2012) Clostridium difficile: development of a novel candidate vaccine. Vaccine 30(29):4307–4309. doi: 10.1016/j.vaccine.2012.01.056 CrossRefGoogle Scholar
  17. 17.
    Freeman J (2003) Effects of cefotaxime and desacetylcefotaxime upon Clostridium difficile proliferation and toxin production in a triple-stage chemostat model of the human gut. J Antimicrob Chemother 52(1):96–102. doi: 10.1093/jac/dkg267 CrossRefGoogle Scholar
  18. 18.
    Freeman J (2005) Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother 56(4):717–725. doi: 10.1093/jac/dki321 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Furuya-Kanamori L, Marquess J, Yakob L, Riley TV, Paterson DL, Foster NF, Huber CA, Clements ACA (2015) Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect Dis 15(1):516. doi: 10.1186/s12879-015-1258-4 CrossRefGoogle Scholar
  20. 20.
    Gerding DN, Johnson S, Rupnik M, Aktories K (2014) Clostridium difficile binary toxin CDT. Gut Microbes 5(1):15–27. doi: 10.4161/gmic.26854 CrossRefGoogle Scholar
  21. 21.
    Hensgens MPM, Goorhuis A, Dekkers OM, van Benthem BHB, Kuijper EJ (2013) All-cause and disease-specific mortality in hospitalized patients with Clostridium difficile infection: a multicenter Cohort study. Clin Infect Dis 56(8):1108–1116. doi: 10.1093/cid/cis1209 CrossRefGoogle Scholar
  22. 22.
    Jabbar U, Leischner J, Kasper D, Gerber R, Sambol SP, Parada JP, Johnson S, Gerding DN (2010) Effectiveness of alcohol-based hand rubs for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol 31(6):565–570. doi: 10.1086/652772 CrossRefGoogle Scholar
  23. 23.
    Jarvis WR, Schlosser J, Jarvis AA, Chinn RY (2009) National point prevalence of Clostridium difficile in US health care facility inpatients, 2008. Am J Infect Control 37(4):263–270. doi: 10.1016/j.ajic.2009.01.001 CrossRefGoogle Scholar
  24. 24.
    Johnson S, Homann SR, Bettin KM, Quick JN, Clabots CR, Peterson LR, Gerding DN (1992) Treatment of asymptomatic Clostridium difficile carriers (fecal excretors) with vancomycin or metronidazole. A randomized, placebo-controlled trial. Ann Intern Med 117(4):297–302CrossRefGoogle Scholar
  25. 25.
    Kelly CP, Kyne L (2011) The host immune response to Clostridium difficile. J Med Microbiol 60(8):1070–1079. doi: 10.1099/jmm.0.030015-0 CrossRefGoogle Scholar
  26. 26.
    Khan FY, Abu-Khattab M, Anand D, Baager K, Alaini A, Siddique MA, Mohamed SF, Ali MI, Al Bedawi MM, Naser MS (2012) Epidemiological features of Clostridium difficile infection among inpatients at Hamad General Hospital in the state of Qatar, 2006–2009. Travel Med Infect Dis 10(4):179–185. doi: 10.1016/j.tmaid.2012.06.004 CrossRefGoogle Scholar
  27. 27.
    Kyne L, Warny M, Qamar A, Kelly CP (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342(6):390–397. doi: 10.1056/NEJM200002103420604 CrossRefGoogle Scholar
  28. 28.
    Lanzas C, Dubberke ER (2014) Effectiveness of screening hospital admissions to detect asymptomatic carriers of Clostridium difficile: a modeling evaluation. Infect Control 35(08):1043–1050. doi: 10.1086/677162 Google Scholar
  29. 29.
    Lanzas C, Dubberke ER, Lu Z, Reske KA, Gröhn YT (2011) Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect Control Hosp Epidemiol 32(06):553–561. doi: 10.1086/660013 CrossRefGoogle Scholar
  30. 30.
    Lawley TD, Clare S, Walker AW, Goulding D, Stabler RA, Croucher N, Mastroeni P, Scott P, Raisen C, Mottram L, Fairweather NF, Wren BW, Parkhill J, Dougan G (2009) Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 77(9):3661–3669. doi: 10.1128/IAI.00558-09 CrossRefGoogle Scholar
  31. 31.
    Leav BA, Blair B, Leney M, Knauber M, Reilly C, Lowy I, Gerding DN, Kelly CP, Katchar K, Baxter R, Ambrosino D, Molrine D (2010) Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine 28(4):965–969. doi: 10.1016/j.vaccine.2009.10.144 CrossRefGoogle Scholar
  32. 32.
    Leffler DA, Lamont JT (2009) Treatment of Clostridium difficile-associated disease. Gastroenterology 136(6):1899–1912. doi: 10.1053/j.gastro.2008.12.070 CrossRefGoogle Scholar
  33. 33.
    Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC (2015) Burden of Clostridium difficile Infection in the United States. N Engl J Med 372(9):825–834. doi: 10.1056/NEJMoa1408913 CrossRefGoogle Scholar
  34. 34.
    Lofgren ET, Moehring RW, Anderson DJ, Weber DJ, Fefferman NH (2014) A mathematical model to evaluate the routine use of fecal microbiota transplantation to prevent incident and recurrent Clostridium difficile infection. Infect Control Hosp Epidemiol 35(01):18–27. doi: 10.1086/674394 CrossRefGoogle Scholar
  35. 35.
    Longtin Y, Paquet-Bolduc B, Gilca R, Garenc C, Fortin E, Longtin J, Trottier S, Gervais P, Roussy JF, Lévesque S, Ben-David D, Cloutier I, Loo VG (2016) Effect of detecting and isolating Clostridium difficile carriers at hospital admission on the incidence of C. difficile infections. JAMA Intern Med 176(6):796. doi: 10.1001/jamainternmed.2016.0177 CrossRefGoogle Scholar
  36. 36.
    Loo VG, Bourgault AM, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost EH, Gilca R, Brassard P, Dendukuri N, Béliveau C, Oughton M, Brukner I, Dascal A (2011) Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 365(18):1693–1703. doi: 10.1056/NEJMoa1012413 CrossRefGoogle Scholar
  37. 37.
    Lowy I, Molrine DC, Leav BA, Blair BM, Baxter R, Gerding DN, Nichol G, Thomas WD, Leney M, Sloan S, Hay CA, Ambrosino DM (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362(3):197–205. doi: 10.1056/NEJMoa0907635 CrossRefGoogle Scholar
  38. 38.
    McDonald LC, Owings M, Jernigan DB (2006) Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis 12(3):409–415. doi: 10.3201/eid1205.051064 CrossRefGoogle Scholar
  39. 39.
    McGlone S, Bailey R, Zimmer S, Popovich M, Tian Y, Ufberg P, Muder R, Lee B (2012) The economic burden of Clostridium difficile. Clin Microbiol Infect 18(3):282–289. doi: 10.1111/j.1469-0691.2011.03571.x CrossRefGoogle Scholar
  40. 40.
    Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, Posey K, Roberts T, Croyle K, Krystofiak S, Patel-Brown S, Pasculle AW, Paterson DL, Saul M, Harrison LH (2005) A large outbreak of Clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol 26(3):273–280. doi: 10.1086/502539 CrossRefGoogle Scholar
  41. 41.
    National Center for Health Statistics (2014) Health, United States, 2013: with special feature on prescription drugs. Technical reports, National Center for Health Statistics, HyattsvilleGoogle Scholar
  42. 42.
    OECD: Average length of stay in hospitals. In: Health at a Glance 2011: OECD Indicators, Health at a Glance, chap. Average le. OECD Publishing (2011). doi: 10.1787/health_glance-2011-33-en
  43. 43.
    Pedersen G, Schonheyder HC, Steffensen FH, Sorenson HT (1999) Risk of resistance related to antibiotic use before admission in patients with community-acquired bacteraemia. J Antimicrob Chemother 43(1):119–126. doi: 10.1093/jac/43.1.119 CrossRefGoogle Scholar
  44. 44.
    Polk RE, Hohmann SF, Medvedev S, Ibrahim O (2011) Benchmarking risk-adjusted adult antibacterial drug use in 70 US academic medical center hospitals. Clin Infect Dis 53(11):1100–1110. doi: 10.1093/cid/cir672 CrossRefGoogle Scholar
  45. 45.
    Rafii F, Sutherland JB, Cerniglia CE (2008) Effects of treatment with antimicrobial agents on the human colonic microflora. Ther Clin Risk Manag 4(6):1343–58CrossRefGoogle Scholar
  46. 46.
    Rubin MA, Jones M, Leecaster M, Khader K, Ray W, Huttner A, Huttner B, Toth D, Sablay T, Borotkanics RJ, Gerding DN, Samore MH (2013) A simulation-based assessment of strategies to control Clostridium difficile transmission and infection. PLoS ONE 8(11):e80671. doi: 10.1371/journal.pone.0080671 CrossRefGoogle Scholar
  47. 47.
    Rubino G, Sericola B (1989) Sojourn times in finite Markov processes. J Appl Probab 26(4):744. doi: 10.2307/3214379 MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ (2010) Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 31(1):21–27. doi: 10.1086/649016 CrossRefGoogle Scholar
  49. 49.
    Slimings C, Armstrong P, Beckingham WD, Bull AL, Hall L, Kennedy KJ, Marquess J, McCann R, Menzies A, Mitchell BG, Richards MJ, Smollen PC, Tracey L, Wilkinson IJ, Wilson FL, Worth LJ, Riley TV (2014) Increasing incidence of Clostridium difficile infection, Australia, 2011–2012. Med J Aust 200(5):272–276. doi: 10.5694/mja13.11153 CrossRefGoogle Scholar
  50. 50.
    Starr J, Campbell A, Renshaw E, Poxton I, Gibson G (2009) Spatio-temporal stochastic modelling of Clostridium difficile. J Hosp Infect 71(1):49–56. doi: 10.1016/j.jhin.2008.09.013 CrossRefGoogle Scholar
  51. 51.
    Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18(2):247–263. doi: 10.1128/CMR.18.2.247-263.2005 CrossRefGoogle Scholar
  52. 52.
    Walker AS, Eyre DW, Wyllie DH, Dingle KE, Harding RM, O’Connor L, Griffiths D, Vaughan A, Finney J, Wilcox MH, Crook DW, Peto TEA (2012) Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med 9(2):e1001172. doi: 10.1371/journal.pmed.1001172 CrossRefGoogle Scholar
  53. 53.
    Yakob L, Riley TV, Paterson DL, Clements AC (2013) Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. BMC Infect Dis 13(1):376. doi: 10.1186/1471-2334-13-376 CrossRefGoogle Scholar
  54. 54.
    Yakob L, Riley TV, Paterson DL, Marquess J, Clements AC (2014) Assessing control bundles for Clostridium difficile: a review and mathematical model. Emerg Microbes Infect 3(6):e43. doi: 10.1038/emi.2014.43 CrossRefGoogle Scholar
  55. 55.
    Yakob, L., Riley, T.V., Paterson, D.L., Marquess, J., Magalhaes, R.J.S., Furuya-Kanamori, L., Clements, A.C. (2015) Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model. Scientific Reports 5(November 2014):12666. doi: 10.1038/srep12666

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  1. 1.Research School of Population HealthAustralian National UniversityCanberraAustralia

Personalised recommendations