Skip to main content

Advertisement

Log in

Transmission Fitness in Co-colonization and the Persistence of Bacterial Pathogens

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Humans are often colonized by polymorphic bacteria such as Streptococcus pneumoniae, Bordetella pertussis, Staphylococcus Aureus, and Haemophilus influenzae. Two co-colonizing pathogen clones may interact with each other upon host entry and during within-host dynamics, ranging from competition to facilitation. Here we examine the significance of these exploitation strategies for bacterial spread and persistence in host populations. We model SIS epidemiological dynamics to capture the global behavior of such multi-strain systems, focusing on different parameters of single and dual colonization. We analyze the impact of heterogeneity in clearance and transmission rates of single and dual colonization and find the criteria under which these asymmetries enhance endemic persistence. We obtain a backward bifurcation near \(R_0 = 1\) if the reproductive value of the parasite in dually infected hosts is sufficiently higher than that in singly infected ones. In such cases, the parasite is able to persist even in sub-threshold conditions, and reducing the basic reproduction number below 1 would be insufficient for elimination. The fitness superiority in co-colonized hosts can be attained by lowering net parasite clearance rate (\(\gamma _\mathrm{{d}}\)), by increasing transmission rate (\(\beta _\mathrm{{d}}\)), or both, and coupling between these traits critically constrains opportunities of pathogen survival in the \(R_0<1\) regime. Finally, using an adaptive dynamics approach, we verify that despite their importance for sub-threshold endemicity, traits expressed exclusively in coinfection should generally evolve independently of single infection traits. In particular, for \(\beta _\mathrm{{d}}\) a saturating parabolic or hyperbolic function of \(\gamma _\mathrm{{d}}\), co-colonization traits evolve to an intermediate optimum (evolutionarily stable strategy, ESS), determined only by host lifespan and the trade-off parameters linking \(\beta _\mathrm{{d}}\) and \(\gamma _\mathrm{{d}}\). Our study invites more empirical attention to the dynamics and evolution of parasite life-history traits expressed exclusively in coinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler FR, Brunet RC (1991) The dynamics of simultaneous infections with altered susceptibilities. Theor Popul Biol 40(3):369–410

    Article  MATH  Google Scholar 

  • Alizon S (2008) Decreased overall virulence in coinfected hosts leads to the persistence of virulent parasites. Am Nat 172(2):E67–E79

    Article  Google Scholar 

  • Alizon S (2013a) Co-infection and super-infection models in evolutionary epidemiology. Interface Focus 3:20130031

  • Alizon S (2013b) Parasite co-transmission and the evolutionary epidemiology of virulence. Evolution 67(4):921–933

  • Auranen K, Mehtala J, Tanskanen A, Kaltoft MS (2010) Between-strain competition in acquisition and clearance of pneumococcal carriage: epidemiologic evidence from a longitudinal study of day-care children. Am J Epidemiol 171(2):169–176

    Article  Google Scholar 

  • Balmer O, Tanner M (2011) Prevalence and implications of multiple-strain infections. Lancet Infect Dis 11(11):868–878

    Article  Google Scholar 

  • Bluestone CD (1996) Pathogenesis of otitis media: role of Eustachian tube. Pediatri Infect Dis J 15(4):281–291

    Article  Google Scholar 

  • Brauer F (2004) Backward bifurcations in simple vaccination models. J Math Anal Appl 298(2):418–431

    Article  MathSciNet  MATH  Google Scholar 

  • Choisy M, de Roode JC (2010) Mixed infections and the evolution of virulence: effects of resource competition, parasite plasticity, and impaired host immunity. Am Nat 175(5):E105–E118

    Article  Google Scholar 

  • Cox F (2001) Concomitant infections, parasites and immune responses. Parasitology 122(S1):S23–S38

    Article  Google Scholar 

  • Dawid S, Roche AM, Weiser JN (2007) The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect Immun 75(1):443–451

    Article  Google Scholar 

  • De Lencastre H, Kristinsson KG, Brito-Avô A, Sanches IS, Sá-Leão R, Saldanha J, Sigvaldadottir E, Karlsson S, Oliveira D (1999) Carriage of respiratory tract pathogens and molecular epidemiology of Streptococcus pneumoniae colonization in healthy children attending day care centers in Lisbon, Portugal. Microb Drug Resist 5(1):19–29

    Article  Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, London

    MATH  Google Scholar 

  • Dushoff J, Huang W, Castillo-Chavez C (1998) Backwards bifurcations and catastrophe in simple models of fatal diseases. J Math Biol 36(3):227–248

    Article  MathSciNet  MATH  Google Scholar 

  • Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103(1):99–111

    Article  MathSciNet  Google Scholar 

  • Feng Z, Castillo-Chavez C, Capurro AF (2000) A model for tuberculosis with exogenous reinfection. Theor Popul Biol 57(3):235–247

    Article  MATH  Google Scholar 

  • Gandon S (2004) Evolution of multihost parasites. Evolution 58(3):455–469

    Article  Google Scholar 

  • Geritz SA, Mesze G, Metz JA et al (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12(1):35–57

    Article  Google Scholar 

  • Gjini E, Valente C, Sá-Leão R, Gomes MGM (2016) How direct competition shapes coexistence and vaccine effects in multi-strain pathogen systems. J Theor Biol 388:50–60

    Article  MATH  Google Scholar 

  • Greenhalgh D, Diekmann O, de Jong MC (2000) Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math Biosci 165(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Huang W, Cooke KL, Castillo-Chavez C (1992) Stability and bifurcation for a multiple-group model for the dynamics of hiv/aids transmission. SIAM J Appl Math 52(3):835–854

    Article  MathSciNet  MATH  Google Scholar 

  • Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6(4):288–301

    Article  Google Scholar 

  • Leibovitch EC, Brunetto GS, Caruso B, Fenton K, Ohayon J, Reich DS, Jacobson S (2014) Coinfection of human herpesviruses 6A (HHV-6A) and HHV-6B as demonstrated by novel digital droplet PCR assay. PloS one 9(3):e92328

    Article  Google Scholar 

  • Lijek RS, Weiser JN (2012) Co-infection subverts mucosal immunity in the upper respiratory tract. Curr Opin Immunol 24(4):417–423

    Article  Google Scholar 

  • Lion S (2013) Multiple infections, kin selection and the evolutionary epidemiology of parasite traits. J Evol Biol 26(10):2107–2122

    Article  Google Scholar 

  • Lipsitch M, Abdullahi O, DÁmour A, Xie W, Weinberger DM, Tchetgen ET, Scott JAG (2012) Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model. Epidemiology (Cambridge, Mass.) 23(4):510

    Article  Google Scholar 

  • Lipsitch M, Dykesa J, Johnsona S, Adesa E, Kingc J, Brilesc D, Carlonea G et al (2000) Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine 19(4):598

    Article  Google Scholar 

  • Lord C, Barnard B, Day K, Hargrove J, McNamara J, Paul R, Trenholme K, Woolhouse M (1999) Aggregation and distribution of strains in microparasites. Philos Trans R Soc B Biol Sci 354(1384):799–807

    Article  Google Scholar 

  • Lysenko ES, Ratner AJ, Nelson AL, Weiser JN (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1(1):e1

    Article  Google Scholar 

  • Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10(1):59

    Article  Google Scholar 

  • Marks LR, Reddinger RM, Hakansson AP (2012) High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 3(5):e00200-12. doi:10.1128/mBio.00200-12

  • Masuda K, Masuda R, Nishi J-I, Tokuda K, Yoshinaga M, Miyata K (2002) Incidences of nasopharyngeal colonization of respiratory bacterial pathogens in Japanese children attending day-care centers. Pediatr Int 44(4):376–380

    Article  Google Scholar 

  • McNally L, Viana M, Brown SP (2014) Cooperative secretions facilitate host range expansion in bacteria. Nat Commun 5:4594. doi:10.1038/ncomms5594

  • Méthot P-O, Alizon S (2014) What is a pathogen? toward a process view of host-parasite interactions. Virulence 5(8):775–785

    Article  Google Scholar 

  • Metz JA, Nisbet RM, Geritz SA (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol 7(6):198–202

    Article  Google Scholar 

  • Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D (2011) Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev 24(3):557–591

    Article  Google Scholar 

  • Murphy TF, Bakaletz LO, Smeesters PR (2009) Microbial interactions in the respiratory tract. Pediatr Infect Dis J 28(10):S121–S126

    Article  Google Scholar 

  • Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292(5519):1099–1102

    Article  Google Scholar 

  • Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7(3):129–133

    Article  Google Scholar 

  • Shak JR, Vidal JE, Klugman KP (2013) Influence of bacterial interactions on pneumococcal colonization of the nasopharynx. Trends Microbiol 21(3):129–135

    Article  Google Scholar 

  • Sharp GB, Kawaoka Y, Jones DJ, Bean WJ, Pryor SP, Hinshaw V, Webster RG (1997) Coinfection of wild ducks by influenza a viruses: distribution patterns and biological significance. J Virol 71(8):6128–6135

    Google Scholar 

  • Smith J, Aberle JH, Fleming VM, Ferenci P, Thomson EC, Karayiannis P, McLean AR, Holzmann H, Klenerman P (2010) Dynamic coinfection with multiple viral subtypes in acute hepatitis C. J Infect Dis 202(12):1770–1779

    Article  Google Scholar 

  • van Baalen M, Sabelis MW (1995) The dynamics of multiple infection and the evolution of virulence. Am Nat 146:881–910

    Article  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201(1):58–71

    Article  MathSciNet  MATH  Google Scholar 

  • Weinberger DM, Malley R, Lipsitch M (2011) Serotype replacement in disease after pneumococcal vaccination. Lancet 378(9807):1962–1973

    Article  Google Scholar 

  • Wolfram Research, Inc., (2011) Mathematica 8.0. https://www.wolfram.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erida Gjini.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaivão, M., Dionisio, F. & Gjini, E. Transmission Fitness in Co-colonization and the Persistence of Bacterial Pathogens. Bull Math Biol 79, 2068–2087 (2017). https://doi.org/10.1007/s11538-017-0320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0320-3

Keywords

Navigation