Bulletin of Mathematical Biology

, Volume 79, Issue 6, pp 1201–1217 | Cite as

A Model for the Spread of an Invasive Weed, Tradescantia fluminensis

  • Alexandra B. HoganEmail author
  • Mary R. Myerscough
Original Article


Tradescantia fluminensis is an invasive weed and a serious threat to native forests in eastern Australia and New Zealand. Current methods of eradication are often ineffective, so understanding the growth mechanisms of Tradescantia is important in formulating better control strategies. We present a partial differential equation (PDE) model for Tradescantia growth and spatial proliferation that accounts for Tradescantia’s particular creeping and branching morphology, and the impact of self-shading on plant growth. This is the first PDE model to represent a weed that spreads via a creeping growth habit rather than by seed dispersal. We use a travelling wave analysis to investigate how Tradescantia extends to colonise new territory. Numerical simulations and analysis show that the model provides a good qualitative representation of the behaviour of this plant. This model provides a foundation for assessing different control and eradication strategies for Tradescantia.


Tradescantia fluminensis Commelinaceae Biological invasion Travelling wave analysis Partial differential equation model Self-shading 



The authors thank Erin Walsh for creating the illustration of Tradescantia morphology; Charlie Macaskill for assistance with the numerical simulations; David Galloway for providing code to animate the travelling wave solution; and Kerry Landman for helpful discussions about the travelling wave analysis.


  1. Aikman D, Watkinson A (1980) A model for growth and self-thinning in even-aged monocultures of plants. Ann Bot 45(4):419–427CrossRefGoogle Scholar
  2. Balding D, McElwain D (1985) A mathematical model of tumour-induced capillary growth. J Theor Biol 114(1):53–73CrossRefGoogle Scholar
  3. Barnes P, Beyschlag W, Ryel R, Flint S, Caldwell M (1990) Plant competition for light analysed with a multi species canopy model, III: influence of canopy structure in mixtures and monocultures of wheat and wild oat. Oecologia 82(4):560–566CrossRefGoogle Scholar
  4. Bastian P, Chavarría-Krauser A, Engwer C, Jäger W, Marnach S, Ptashnyk M (2008) Modelling in vitro growth of dense root networks. J Theor Biol 254(1):99–109. doi: 10.1016/j.jtbi.2008.04.014 CrossRefGoogle Scholar
  5. Burns JH (2008) Demographic performance predicts invasiveness of species in the Commelinaceae under high-nutrient conditions. Ecol Appl 18(2):335–346. doi: 10.1890/07-0568.1 CrossRefGoogle Scholar
  6. Byrne H, Chaplain M (1995) Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 57(3):461–486CrossRefzbMATHGoogle Scholar
  7. CABI (2008) Tradescantia fluminensis. Accessed 18 Nov 2015
  8. Calado G, Duarte P (2000) Modelling growth of Ruppia cirrhosa. Aquat Bot 68(1):29–44. doi: 10.1016/S0304-3770(00)00104-2 CrossRefGoogle Scholar
  9. Edelstein L (1982) The propagation of fungal colonies: a model for tissue growth. J Theor Biol 98(4):679–701MathSciNetCrossRefGoogle Scholar
  10. Fowler SV, Barreto R, Dodd S, Macedo DM, Paynter Q, Pedrosa-Macedo JH, Pereira OL, Peterson P, Smith L, Waipara N, Winks CJ, Forrester G (2013) Tradescantia fluminensis, an exotic weed affecting native forest regeneration in New Zealand: ecological surveys, safety tests and releases of four biocontrol agents from Brazil. Biol Control 64(3):323–329. doi: 10.1016/j.biocontrol.2012.11.013 CrossRefGoogle Scholar
  11. Griffiths G, Schiesser WE (2011) Traveling wave analysis of partial differential equations. Elsevier, AmsterdamGoogle Scholar
  12. Hogan A (2009) A mathematical model for the growth and spread of an invasive weed, Tradescantia fluminensis, Honours Thesis. School of Mathematics and Statistics, The University of SydneyGoogle Scholar
  13. James A, Molloy SM, Ponder-Sutton A, Plank MJ, Lamoureaux SL, Bourdôt GW, Kelly D (2015) Modelling Tradescantia fluminensis to assess long term survival. PeerJ 3:e1013. doi: 10.7717/peerj.1013 CrossRefGoogle Scholar
  14. Kelly D, Skipworth JP (1984) Tradescantia fluminensis in a Manawatu (New Zealand) forest: I. Growth and effects on regeneration. N Z J Bot 22(3):393–397. doi: 10.1080/0028825X.1984.10425270 CrossRefGoogle Scholar
  15. Maule H, Andrews M, Morton J (1995) Sun/shade acclimation and nitrogen nutrition of Tradescantia fluminensis, a problem weed in New Zealand native forest remnants. N Z J Ecol 19(1):35–46Google Scholar
  16. Murray JD (2002) Mathematical biology: I. An introduction, 3rd edn. Springer, New YorkzbMATHGoogle Scholar
  17. Perry LG, Neuhauser C, Galatowitsch SM (2003) Founder control and coexistence in a simple model of asymmetric competition for light. J Theor Biol 222(4):425–436. doi: 10.1016/S0022-5193(03)00055-9 MathSciNetCrossRefGoogle Scholar
  18. Standish R, Robertson AW, Williams PA (2001) The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. J Appl Ecol 38(6):1253–1263CrossRefGoogle Scholar
  19. Standish R, Williams P, Robertson A, Scott NA, Hedderley DI (2004) Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants. Biol Invasions 6(1):71–81. doi: 10.1023/B:BINV.0000010127.06695.f4 CrossRefGoogle Scholar
  20. Vance RR, Nevai AL (2007) Plant population growth and competition in a light gradient: a mathematical model of canopy partitioning. J Theor Biol 245(2):210–219. doi: 10.1016/j.jtbi.2006.10.015 MathSciNetCrossRefGoogle Scholar
  21. Wiles L, Wilkerson G (1991) Modeling competition for light between soybean and broadleaf weeds. Agric Syst 35(1):37–51CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  1. 1.Research School of Population HealthThe Australian National UniversityCanberraAustralia
  2. 2.School of Mathematics and StatisticsThe University of SydneyCamperdownAustralia

Personalised recommendations