Stability Analysis of a Model of Interaction Between the Immune System and Cancer Cells in Chronic Myelogenous Leukemia

  • Apollos Besse
  • Geoffrey D. Clapp
  • Samuel Bernard
  • Franck E. Nicolini
  • Doron Levy
  • Thomas Lepoutre
Special Issue : Mathematical Oncology

Abstract

We describe here a simple model for the interaction between leukemic cells and the autologous immune response in chronic phase chronic myelogenous leukemia (CML). This model is a simplified version of the model we proposed in Clapp et al. (Cancer Res 75:4053–4062, 2015). Our simplification is based on the observation that certain key characteristics of the dynamics of CML can be captured with a three-compartment model: two for the leukemic cells (stem cells and mature cells) and one for the immune response. We characterize the existence of steady states and their stability for generic forms of immunosuppressive effects of leukemic cells. We provide a complete co-dimension one bifurcation analysis. Our results show how clinical response to tyrosine kinase inhibitors treatment is compatible with the existence of a stable low disease, treatment-free steady state.

Keywords

Chronic myelogenous leukemia Immune response Bifurcation analysis Linear stability 

Notes

Acknowledgements

The work of GC was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1322106. The work of DL was supported in part by the John Simon Guggenheim Memorial Foundation. The work was supported by the Inria Partnerships Program grant “Modelling Leukemia.”

References

  1. Burchert A, Inselmann S, Saussele S, Dietz CT, Müller MC, Eigendorff E, Brümmendorf TH, Waller C, Dengler J, Goebeler ME, Herbst R, Freunek G, Hanzel S, Illmer T, Wang Y, Neubauer A, Lange T, Hochhaus A, Florian F, Brendel CA, Guilhot J, Mahon FX, Schütz C (2015) Frequency of CTLA-4 receptor ligand (CD86, B7.2)-positive plasmacytoid dendritic cells predicts risk of disease recurrence after tyrosine-kinase inhibitor discontinuation in chronic myeloid leukemia: results from a prospective substudy of the Euroski trial. Blood 126(23):599Google Scholar
  2. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, Bhatia R (2011) Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118(20):5565–5572CrossRefGoogle Scholar
  3. Clapp GD (2016) Applying mathematical models to study the role of the immune system in chronic myelogenous leukemia. Ph.D. Dissertation, University of Maryland, College ParkGoogle Scholar
  4. Clapp GD, Levy D (2015) A review of mathematical models for lymphoma and leukemia. Drug Discov Today Dis Models 16:1–6CrossRefGoogle Scholar
  5. Clapp GD, Lepoutre T, Nicolini N, Levy D (2016) BCR-ABL transcript variations in chronic myelogenous leukemia patients on imatinib first-line: Possible role of the autologous immune system. Oncoimmunology 5(5):e1122159CrossRefGoogle Scholar
  6. Clapp GD, Lepoutre T, El Cheikh R, Bernard S, Ruby J, Labussière-Wallet H, Nicolini F, Levy D (2015) Implication of the autologous immune system in BCR-ABL transcript variations in chronic myelogenous leukemia patients treated with imatinib. Cancer Res 75(19):4053–4062CrossRefGoogle Scholar
  7. Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96(10):3343–3356Google Scholar
  8. Falkenburg JH, Wafelman AR, Joosten P, van Smit WM, Bergen CA, Bongaerts R, van Der Lurvink E, Hoorn M, Kluck P, Landegent JE, Kluin-Nelemans HC, Fibbe WE, Willemze R (1999) Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 94(4):1201–1208Google Scholar
  9. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2008) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319–325CrossRefGoogle Scholar
  10. Ilander M, Kreutzman A, Mustjoki S (2014) IFN\(\alpha \) induces prolonged remissions modeling curative immunologic responses in chronic myeloid leukemia. Oncoimmunology 3:e28781CrossRefGoogle Scholar
  11. Kim PS, Lee PP, Levy D (2008) Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput Biol 4(6):e1000095Google Scholar
  12. Komarova N, Wodarz D (2007) Effect of cellular quiescence on the success of targeted CML therapy. PLoS one 2(10):e990CrossRefGoogle Scholar
  13. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math Biol 56(2):295–321CrossRefMATHGoogle Scholar
  14. Mahon F-X, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini L, Legros L, Charbonnier A, Guerci A, Varet B, Etienne G, Reiffers J, Rousselot P (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11(11):1029–1035CrossRefGoogle Scholar
  15. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature 435(7046):1267–1270CrossRefGoogle Scholar
  16. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004CrossRefGoogle Scholar
  17. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, Coiteux V, Gardembas M, Berthou C, Vekhoff A, Rea D, Jourdan E, Allard C, Delmer A, Rousselot P, Legros L, Berger M, Corm S, Etienne G, Roche-Lestienne C, Eclache V, Mahon FX, Guilhot F (2010) Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med 363(26):2511–2521CrossRefGoogle Scholar
  18. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller M, Loeffler M (2006) Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 12(10):1181–1184CrossRefGoogle Scholar
  19. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA, Slader C, Field C, Dang P, Filshie RJ, Mills AK, Grigg AP, Melo JV, Hughes TP (2010) Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 24(10):1719–1724CrossRefGoogle Scholar
  20. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, Blanchet O, Marit G, Gluckman E, Reiffers J, Gardembas M, Mahon FX (2007) Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109(1):58–61CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2017

Authors and Affiliations

  1. 1.Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208Institut Camille JordanVilleurbanne cedexFrance
  2. 2.INRIAVilleurbanneFrance
  3. 3.Department of MathematicsUniversity of MarylandCollege ParkUSA
  4. 4.Hematology Department 1GCentre Hospitalier Lyon SudPierre BéniteFrance
  5. 5.INSERM U1052 Centre de Recherche en Cancérologie de LyonLyonFrance
  6. 6.Department of Mathematics and Center for Scientific Computation and Mathematical Modeling (CSCAMM)University of MarylandCollege ParkUSA

Personalised recommendations