Bulletin of Mathematical Biology

, Volume 79, Issue 1, pp 163–190 | Cite as

Provisioning of Public Health Can Be Designed to Anticipate Public Policy Responses

  • Jing Li
  • Darla V. Lindberg
  • Rachel A. Smith
  • Timothy C. Reluga
Original Article
  • 167 Downloads

Abstract

Public health policies can elicit strong responses from individuals. These responses can promote, reduce, and even reverse the expected benefits of the policies. Therefore, projections of individual responses to policy can be important ingredients in policy design. Yet our foresight of individual responses to public health investment remains limited. This paper formulates a population game describing the prevention of infectious disease transmission when community health depends on the interactions of individual and public investments. We compare three common relationships between public and individual investments and explain how each relationship alters policy responses and health outcomes. Our methods illustrate how identifying system interactions between nature and society can help us anticipate policy responses.

Keywords

Epidemiological games Infectious disease Community health Policy resistance Policy reinforcement Health commons 

Notes

Acknowledgements

We would like to thank F. Débarre for her helpful comments. This research was supported by Bill and Melinda Gates Foundation Grant 49276 (TCR) and NIH Grant PAR-08-224 (JL, DL, RS, TCR). We dedicate this paper in memory of Elinor Ostrom. Portions of this research were first publicly presented at the 2011 annual meeting of the Society for Mathematical Biology in Krakow, Poland.

References

  1. Althouse B, Bergstrom T, Bergstrom C (2010) A public choice framework for controlling transmissible and evolving diseases. Proc Natl Acad Sci 107:1696. doi:10.1073/pnas.0906078107 CrossRefGoogle Scholar
  2. Bauch CT, Earn DJD (2004) Vaccination and the theory of games. Proc Natl Acad Sci 101:13391–13394. doi:10.1073/pnas.0403823101 MathSciNetCrossRefMATHGoogle Scholar
  3. Bauch CT, Galvani AP, Earn DJD (2003) Group interest versus self-interest in smallpox vaccination policy. Proc Natl Acad Sci 100:10564–10567. doi:10.1073/pnas.1731324100 MathSciNetCrossRefMATHGoogle Scholar
  4. Bonds MH, Keenan D, Rohani P, Sachs JD (2010) Poverty trap formed by the ecology of infectious diseases. Proc R Soc Ser B 277:1185–1192. doi:10.1098/rspb.2009.1778 CrossRefGoogle Scholar
  5. Bootsma MCJ, Ferguson NM (2007) The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc Natl Acad Sci 104:7588–7593. doi:10.1073/pnas.0611071104 CrossRefGoogle Scholar
  6. Brito DL, Sheshinski E, Intriligator MD (1991) Externalities and compulsory vaccinations. J Public Econ 45:69–90CrossRefGoogle Scholar
  7. Bulow JI, Geanakoplos JD, Klemperer PD (1985) Multimarket oligopoly: strategic substitutes and complements. J Polit Econ 93:488–511. doi:10.1086/261312 CrossRefGoogle Scholar
  8. Chen FH (2004) Rational behavioral response and the transmission of STDs. Theor Popul Biol 66:307–316. doi:10.1016/j.tpb.2004.07.004 CrossRefMATHGoogle Scholar
  9. Chen FH (2006) A susceptible-infected epidemic model with voluntary vaccinations. J Math Biol 53:253–272. doi:10.1007/s00285-006-0006-1 MathSciNetCrossRefMATHGoogle Scholar
  10. Chen FH (2009) Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases. Math Biosci 217:125–133. doi:10.1016/j.mbs.2008.11.005 MathSciNetCrossRefMATHGoogle Scholar
  11. Cojocaru M-G, Bauch CT, Johnston MD (2007) Dynamics of vaccination strategies via projected dynamical systems. Bull Math Biol 69:1453–1476. doi:10.1007/s11538-006-9173-x MathSciNetCrossRefMATHGoogle Scholar
  12. Eshel I (1983) Evolutionary and continuous stability. J Theor Biol 103:99–111MathSciNetCrossRefGoogle Scholar
  13. Fenichel E, Castillo-Chavez C, Ceddia M, Chowell G, Parra P, Hickling G, Holloway G, Horan R, Morin B, Perrings C et al (2011) Adaptive human behavior in epidemiological models. Proc Natl Acad Sci 108:6306. doi:10.1073/pnas.1011250108 CrossRefGoogle Scholar
  14. Ferguson N (2007) Capturing human behavior. Nature 446:733CrossRefGoogle Scholar
  15. Fine PEM, Clarkson JA (1986) Individual versus public priorities in the determination of optimal vaccination policies. Am J Epidemiol 124:1012–1020Google Scholar
  16. Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface 7:1247–1256. doi:10.1098/rsif.2010.0142 CrossRefGoogle Scholar
  17. Gersovitz M (2010) The economics of infection control. Annu Rev Resour Econ 3:277–296. doi:10.1146/annurev-resource-083110-120052 CrossRefGoogle Scholar
  18. Gersovitz M, Hammer JS (2004) The economical control of infectious diseases. Econ J 114:1–27. doi:10.1046/j.0013-0133.2003.0174.x CrossRefGoogle Scholar
  19. Goldman SM, Lightwood J (2002) Cost optimization in the SIS model of infectious disease with treatment. Top Econ Anal Policy 2:1–22. doi:10.2202/1538-0653.1007 Google Scholar
  20. Gorbach SL, Bartlett JG, Blacklow NR (2004) Infectious diseases. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  21. Hardin G (1968) The tragedy of the commons. Science 162:1243–1248. doi:10.1126/science.162.3859.1243 CrossRefGoogle Scholar
  22. Hatchett RJ, Mecher CE, Lipsitch M (2007) Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci 104:7582–7587. doi:10.1073/pnas.0610941104 CrossRefGoogle Scholar
  23. Hethcote HW, Yorke IA (1984) Gonorrhea transmission and control, vol 56, lecture notes in biomathematics. Springer, HeidelbergGoogle Scholar
  24. Howard RA (1960) Dynamic programming and Markov processes. MIT Press, CambridgeMATHGoogle Scholar
  25. Nelson KE, Williams CFM (2007) Infectious disease epidemiology: theory and practice. Jones & Bartlett Publishers, BostonGoogle Scholar
  26. Olson M (1965) The logic of collective action. Harvard University Press, CambridgeGoogle Scholar
  27. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Reluga TC (2010) Game theory of social distancing in response to an epidemic. PLoS Comput Biol 6:e1000793. doi:10.1371/journal.pcbi.1000793 MathSciNetCrossRefGoogle Scholar
  29. Reluga TC, Galvani AP (2011) A general approach for population games with application to vaccination. Math Biosci 230:67–78. doi:10.1016/j.mbs.2011.01.003 MathSciNetCrossRefMATHGoogle Scholar
  30. Reluga TC, Bauch CT, Galvani AP (2006) Evolving public perceptions and stability in vaccine uptake. Math Biosci 204:185–198. doi:10.1016/j.mbs.2006.08.015 MathSciNetCrossRefMATHGoogle Scholar
  31. Reluga TC, Medlock J, Poolman E, Galvani AP (2007) Optimal timing of disease transmission in an age-structured population. Bull Math Biol 69:2711–2722. doi:10.1007/s11538-007-9238-5 MathSciNetCrossRefMATHGoogle Scholar
  32. Sterman JD (2006) Learning from evidence in a complex world. Am J Public Health 96:505–514. doi:10.2105/AJPH.2005.066043 CrossRefGoogle Scholar
  33. UNICEF/WHO (2009) Diarrhoea: why children are still dying and what can be done. WHO, GenevaGoogle Scholar
  34. Walker C, Friberg IK, Binkin N, Young M, Walker N, Fontaine O, Weissman E, Gupta A, Black RE (2011) Scaling up diarrhea prevention and treatment interventions: a lives saved tool analysis. PLoS Med 8:e1000428. doi:10.1371/journal.pmed.1000428 CrossRefGoogle Scholar
  35. WHO (1999) Report on infectious diseases: removing obstacles to healthy development. Technical Report, WHOGoogle Scholar

Copyright information

© Society for Mathematical Biology 2016

Authors and Affiliations

  • Jing Li
    • 1
  • Darla V. Lindberg
    • 2
  • Rachel A. Smith
    • 3
  • Timothy C. Reluga
    • 4
  1. 1.Department of MathematicsCalifornia State University, NorthridgeNorthridgeUSA
  2. 2.Department of Architecture, Center for Infectious Disease DynamicsPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Communication Arts and SciencesPennsylvania State UniversityUniversity ParkUSA
  4. 4.Departments of Mathematics and BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations