Bulletin of Mathematical Biology

, Volume 78, Issue 10, pp 2057–2090 | Cite as

Impact of Population Recruitment on the HIV Epidemics and the Effectiveness of HIV Prevention Interventions

  • Yuqin Zhao
  • Daniel T. Wood
  • Hristo V. Kojouharov
  • Yang Kuang
  • Dobromir T. DimitrovEmail author
Original Article


Mechanistic mathematical models are increasingly used to evaluate the effectiveness of different interventions for HIV prevention and to inform public health decisions. By focusing exclusively on the impact of the interventions, the importance of the demographic processes in these studies is often underestimated. In this paper, we use simple deterministic models to assess the effectiveness of pre-exposure prophylaxis in reducing the HIV transmission and to explore the influence of the recruitment mechanisms on the epidemic and effectiveness projections. We employ three commonly used formulas that correspond to constant, proportional and logistic recruitment and compare the dynamical properties of the resulting models. Our analysis exposes substantial differences in the transient and asymptotic behavior of the models which result in 47 % variation in population size and more than 6 percentage points variation in HIV prevalence over 40 years between models using different recruitment mechanisms. We outline the strong influence of recruitment assumptions on the impact of HIV prevention interventions and conclude that detailed demographic data should be used to inform the integration of recruitment processes in the models before HIV prevention is considered.


Mathematical modeling HIV prevention Pre-exposure prophylaxis Population recruitment 

Mathematics Subject Classification

34K20 92C50 92D25 


  1. Abbas UL, Glaubius R, Mubayi A, Hood G, Mellors JW (2013) Antiretroviral therapy and pre-exposure prophylaxis: combined impact on HIV transmission and drug resistance in South Africa. J Infect Dis 208(2):224–234. doi: 10.1093/infdis/jit150 CrossRefGoogle Scholar
  2. Abbas UL, Anderson RM, Mellors JW (2007) Potential impact of antiretroviral chemoprophylaxis on HIV-1 transmission in resource-limited settings. PLoS ONE 2(9):e875CrossRefGoogle Scholar
  3. Andrew PC, Foss AM, Shafer LA, Nsubuga RN, Vickerman P, Hayes RJ, Watts C, White RG (2011) Attaining realistic and substantial reductions in HIV incidence: model projections of combining microbicide and male circumcision interventions in rural uganda. Sex Transm Infect 87(7):635–639CrossRefGoogle Scholar
  4. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta Rémi, Puren A (2005) Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med 2(11):e298CrossRefGoogle Scholar
  5. Bacaer N, Pretorius C, Auvert B (2010) An age-structured model for the potential impact of generalized access to antiretrovirals on the South African HIV epidemic. Bull Math Biol 72(8):2180–2198MathSciNetCrossRefzbMATHGoogle Scholar
  6. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, Tappero JW, Bukusi EA, Cohen CR, Katabira E et al (2012) Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 367(5):399–410CrossRefGoogle Scholar
  7. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, Williams CFM, Campbell RT, Ndinya-Achola JO (2007) Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet 369(9562):643–656CrossRefGoogle Scholar
  8. Becquet R, Ekouevi DK, Arrive E, Stringer JSA, Meda Nicolas, Chaix Marie-Laure, Treluyer JM, Leroy V, Rouzioux C, Blanche S et al (2009) Universal antiretroviral therapy for pregnant and breast-feeding HIV-1-infected women: towards the elimination of mother-to-child transmission of HIV-1 in resource-limited settings. Clin Infect Dis 49(12):1936–1945CrossRefGoogle Scholar
  9. Berezovsky F, Karev G, Song B, Castillo-Chavez C (2005) A simple epidemic model with surprising dynamics. Math Biosci Eng 2(1):133–152MathSciNetzbMATHGoogle Scholar
  10. Boily MC, Bastos FI, Desai K, Masse B (2004) Changes in the transmission dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy could explain increases in sexually transmitted infections: Results from mathematical models sexually transmitted diseases. Sex Transm Dis 31(2):100–112CrossRefGoogle Scholar
  11. Boily MC, Baggaley RF, Wang L, Masse B, White RG, Hayes RJ, Alary M (2009) Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis 9(2):118–129CrossRefGoogle Scholar
  12. Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA, Leethochawalit M, Chiamwongpaet S, Kitisin P, Natrujirote P, Kittimunkong S, Chuachoowong R, Gvetadze RJ, McNicholl JM, Paxton LA, Curlin ME, Hendrix CW, Vanichseni S (2013) Antiretroviral prophylaxis for HIV infection in injecting drug users in bangkok, thailand (the bangkok tenofovir study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 381(9883):2083–2090. doi: 10.1016/S0140-6736(13)61127-7 CrossRefGoogle Scholar
  13. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JHS et al (2011) Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 365(6):493–505CrossRefGoogle Scholar
  14. Cremin I, Alsallaq R, Dybul M, Piot P, Garnett G, Hallett TB (2013) The new role of antiretrovirals in combination HIV prevention: a mathematical modelling analysis. AIDS 27(3):447–458CrossRefGoogle Scholar
  15. Desai K, Sansom SL, Ackers ML, Stewart SR, Hall H Irene, Hu Dale J, Sanders Rachel, Scotton Carol R, Soorapanth S, Boily M-C, Garnett GP, McElroy PD (2008) Modeling the impact of HIV chemoprophylaxis strategies among men who have sex with men in the United States: HIV infections prevented and cost-effectiveness. AIDS 22(14):1829–1839CrossRefGoogle Scholar
  16. Dimitrov D, Boily MC, Mâsse BR, Brown ER (2012) Impact of pill sharing on drug resistance due to a wide-scale oral prep intervention in generalized epidemics. J AIDS Clin Res 5:2Google Scholar
  17. Dimitrov DT, Masse B, Boily M-C (2010) Who will benefit from a wide-scale introduction of vaginal microbicides in developing countries? Stat Commun Infect Dis 2:1012 (Article 4)MathSciNetGoogle Scholar
  18. Dimitrov DT, Boily MC, Baggaley RF, Masse B (2011) Modeling the gender-specific impact of vaginal microbicides on HIV transmission. J Theor Biol 288:9–20CrossRefGoogle Scholar
  19. Dimitrov DT, Kuang Y, Masse B R (2014) Assessing the impact of HIV interventions on public health: mathematic models must account for changing demographics. JAIDS J Acquir Immune Defic Syndr 66(2):60–62. doi: 10.1097/QAI.0b013e3182785638 Google Scholar
  20. Dimitrov D, Boily M-C, Brown ER, Hallett TB (2013a) Analytic review of modeling studies of arv based prep interventions reveals strong influence of drug-resistance assumptions on the population-level effectiveness. PLoS ONE 8(11):e80927. doi: 10.1371/journal.pone.0080927 CrossRefGoogle Scholar
  21. Dimitrov DT, Mâsse BR, Boily M-C (2013b) Beating the placebo in HIV prevention efficacy trials: the role of the minimal efficacy bound. JAIDS J Acquir Immune Defic Syndr 62(1):95–101CrossRefGoogle Scholar
  22. Eaton JW, Hallett TB (2014) Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence. Proc Nat Acad Sci 111(45):16202–16207CrossRefGoogle Scholar
  23. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG (2009) Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373(9657):48–57CrossRefGoogle Scholar
  24. Grant RM, Lama JR, Anderson PL, McMahan V, Liu Albert Y, Vargas Lorena, Goicochea P, Casapía M, Guanira-Carranza JV, Ramirez-Cardich ME et al (2010) Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363(27):2587–2599CrossRefGoogle Scholar
  25. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya Stephen, Nalugoda F, Kiwanuka N, Moulton LH, Chaudhary MA, Chen MZ et al (2007) Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet 369(9562):657–666CrossRefGoogle Scholar
  26. Hews S, Eikenberry S, Nagy JD, Kuang Y (2010) Rich dynamics of a Hepatitis B viral infection model with logistic hepatocyte growth. J Math Biol 60:573–590MathSciNetCrossRefzbMATHGoogle Scholar
  27. Hwang T-W, Kuang Y (2003) Deterministic extinction effect of parasites on host populations. J Math Biol 46(1):17–30MathSciNetCrossRefzbMATHGoogle Scholar
  28. Juusola JL, Brandeau ML, Owens DK, Bendavid E (2012) The cost-effectiveness of preexposure prophylaxis for HIV prevention in the United States in men who have sex with men. Ann Intern Med 156(8):541–550CrossRefGoogle Scholar
  29. Kalichman SC, Simbayi LC, Cain D, Jooste S (2009) Heterosexual anal intercourse among community and clinical settings in Cape Town, South Africa. Sex Transm Infect 85(6):411–415CrossRefGoogle Scholar
  30. Karim QA, Abdool SS, Karim JA, Frohlich AC, Grobler CB, Mansoor LE, Kharsany ABM, Sibeko S, Mlisana KP, Omar Z et al (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329(5996):1168–1174CrossRefGoogle Scholar
  31. Kato M, Granich R, Bui DD, Tran HV, Nadol Patrick, Jacka David, Sabin K, Suthar AB, Mesquita F, Lo YR, Williams B (2013) The potential impact of expanding antiretroviral therapy and combination prevention in Vietnam: towards elimination of HIV transmission. JAIDS. J Acquir Immune Defic Syndr 63(5):e142–e149. doi: 10.1097/QAI.0b013e31829b535b CrossRefGoogle Scholar
  32. Korobeinikov A (2006) Lyapunov functions and global stability for sir and sirs epidemiological models with non-linear transmission. Bull Math Biol 68(3):615–626MathSciNetCrossRefzbMATHGoogle Scholar
  33. Morgan D, Mahe C, Mayanja B, Okongo JM, Lubega R, Whitworth JAG (2002) HIV-1 infection in rural Africa: is there a difference in median time to aids and survival compared with that in industrialized countries? AIDS 16(4):597–603CrossRefGoogle Scholar
  34. Nichols BE, Boucher CAB, van Dijk JH, Thuma PE, Nouwen Jan L, Baltussen R, van de Wijgert J, Sloot PMA, van de Vijver DAMC (2013) Cost-effectiveness of pre-exposure prophylaxis (prep) in preventing HIV-1 infections in rural Zambia: A modeling study. PloS ONE 8(3):e59549CrossRefGoogle Scholar
  35. Porter K, Zaba B (2004) The empirical evidence for the impact of HIV on adult mortality in the developing world: data from serological studies. AIDS 18:S9–S17CrossRefGoogle Scholar
  36. Sorensen SW, Sansom SL, Brooks JT, Marks G, Begier Elizabeth M, Buchacz Kate, DiNenno Elizabeth A, Mermin Jonathan H, Kilmarx Peter H (2012) A mathematical model of comprehensive test-and-treat services and HIV incidence among men who have sex with men in the United States. PloS ONE 7(2):e29098CrossRefGoogle Scholar
  37. Statistics South Africa (2012) Mid-year population estimates, 2011. Stats SA: Statistical release P0302:Google Scholar
  38. Supervie V, García-Lerma JG, Heneine W, Blower S (2010) HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc Natl Acad Sci 107(27):12381–12386CrossRefGoogle Scholar
  39. Supervie V, Barrett M, Kahn JS, Musuka G, Moeti TL, Busang L, Blower S (2011) Modeling dynamic interactions between pre-exposure prophylaxis interventions & treatment programs: predicting HIV transmission & resistance. Sci Rep 1:185CrossRefGoogle Scholar
  40. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM, Henderson FL, Pathak SR, Soud FA, Chillag KL, Mutanhaurwa R, Chirwa LI, Kasonde M, Abebe D, Buliva E, Gvetadze RJ, Johnson S, Sukalac T, Thomas VT, Hart C, Johnson JA, Malotte CK, Hendrix CW, Brooks JT (2012) Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 367(5):423–434CrossRefGoogle Scholar
  41. UNAIDS (2009) AIDS epidemic update: December 2009. WHO Regional Office EuropeGoogle Scholar
  42. Vickerman P, Terris-Prestholt F, Delany S, Kumaranayake L, Rees H, Watts C (2006) Are targeted HIV prevention activities cost-effective in high prevalence settings? Results from a sexually transmitted infection treatment project for sex workers in Johannesburg, South Africa. Sex Transm Dis 30(Suppl 10):S122–S132CrossRefGoogle Scholar
  43. Wawer Maria J, Gray Ronald H, Sewankambo Nelson K, Serwadda David, Li Xianbin, Laeyendecker Oliver, Kiwanuka Noah, Kigozi Godfrey, Kiddugavu Mohammed, Lutalo Thomas et al (2005) Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis 191(9):1403–1409CrossRefGoogle Scholar
  44. Wilson David P, Coplan Paul M, Wainberg Mark A, Blower Sally M (2008) The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc Natl Acad Sci 105(28):9835–9840CrossRefGoogle Scholar
  45. Zhao Y, Dimitrov DT, Liu H, Kuang Y (2013) Mathematical insights in evaluating state dependent effectiveness of HIV prevention interventions. Bull Math Biol 75:649–675Google Scholar

Copyright information

© Society for Mathematical Biology 2016

Authors and Affiliations

  • Yuqin Zhao
    • 1
  • Daniel T. Wood
    • 2
  • Hristo V. Kojouharov
    • 3
  • Yang Kuang
    • 4
  • Dobromir T. Dimitrov
    • 2
    Email author
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Statistical Center for HIV/AIDS Research and Prevention (SCHARP)Fred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Department of MathematicsThe University of Texas at ArlingtonArlingtonUSA
  4. 4.Department of Mathematics and StatisticsArizona State UniversityTempeUSA

Personalised recommendations