Bulletin of Mathematical Biology

, Volume 78, Issue 9, pp 1773–1795 | Cite as

Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?

  • Philippe Gambette
  • Leo van Iersel
  • Steven Kelk
  • Fabio Pardi
  • Celine Scornavacca
Original Article


Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.


Phylogenetic network Tree containment Branch lengths Displayed trees Computational complexity 



This work was partially funded by the CNRS “Projet international de coopération scientifique (PICS)” grant number 230310 (CoCoAlSeq). L. van Iersel was partly funded by the 4TU Applied Mathematics Institute and The Netherlands Organisation for Scientific Research (NWO). F. Pardi is a member of the VIROGENESIS project, which receives funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 634650.


  1. Abbott R, Albach D, Ansell S, Arntzen J, Baird S, Bierne N, Boughman J, Brelsford A, Buerkle C, Buggs R et al (2013) Hybridization and speciation. J Evolut Biol 26(2):229–246CrossRefGoogle Scholar
  2. Bapteste E, van Iersel L, Janke A, Kelchner S, Kelk S, McInerney JO, Morrison DA, Nakhleh L, Steel M, Stougie L et al (2013) Networks: expanding evolutionary thinking. Trends Genet 29(8):439–441CrossRefGoogle Scholar
  3. Baroni M, Semple C, Steel M (2006) Hybrids in real time. Syst Biol 55(1):46–56CrossRefGoogle Scholar
  4. Bordewich M, Tokac N (2016) An algorithm for reconstructing ultrametric tree-child networks from inter-taxa distances. Discrete Appl Math. doi: 10.1016/j.dam.2016.05.011
  5. Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc R Soc B Biol Sci 277(1683):819–827CrossRefGoogle Scholar
  6. Cardona G, Llabrés M, Rosselló F, Valiente G (2008) A distance metric for a class of tree-sibling phylogenetic networks. Bioinformatics 24(13):1481–1488CrossRefGoogle Scholar
  7. Chan HL, Jansson J, Lam TW, Yiu SM (2006) Reconstructing an ultrametric galled phylogenetic network from a distance matrix. J Bioinform Comput Biol 4(04):807–832CrossRefzbMATHGoogle Scholar
  8. Choy C, Jansson J, Sadakane K, Sung WK (2005) Computing the maximum agreement of phylogenetic networks. Theor Comput Sci 335(1):93–107MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cordue P, Linz S, Semple C (2014) Phylogenetic networks that display a tree twice. Bull Math Biol 76(10):2664–2679MathSciNetCrossRefzbMATHGoogle Scholar
  10. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, CambridgezbMATHGoogle Scholar
  11. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128CrossRefGoogle Scholar
  12. Downey RG, Fellows MR (2013) Fundamentals of parameterized complexity, vol 4. Springer, BerlinCrossRefzbMATHGoogle Scholar
  13. Doyon JP, Scornavacca C, Gorbunov KY, Szöllösi GJ, Ranwez V, Berry V (2011) An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications, and transfers. In: Proceedings of the eighth RECOMB comparative genomics satellite workshop (RECOMB-CG’10), LNCS, vol 6398, pp 93–108. SpringerGoogle Scholar
  14. Gambette P, Berry V, Paul C (2009) The structure of level-k phylogenetic networks. In: CPM09, LNCS, vol 5577, pp 289–300. SpringerGoogle Scholar
  15. Garey MR, Johnson DS (1975) Complexity results for multiprocessor scheduling under resource constraints. SIAM J Comput 4(4):397–411MathSciNetCrossRefzbMATHGoogle Scholar
  16. Garey MR, Johnson DS (1979) Computers and intractability. W. H. Freeman and Co. A guide to the theory of NP-completeness, A Series of Books in the Mathematical SciencesGoogle Scholar
  17. Gramm J, Nickelsen A, Tantau T (2008) Fixed-parameter algorithms in phylogenetics. Comput J 51(1):79–101CrossRefGoogle Scholar
  18. Gusfield D (2014) ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic networks. MIT Press, CambridgezbMATHGoogle Scholar
  19. Hotopp JCD (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27(4):157–163CrossRefGoogle Scholar
  20. Huber KT, van Iersel L, Moulton V, Wu T (2015) How much information is needed to infer reticulate evolutionary histories? Syst Biol 64(1):102–111CrossRefGoogle Scholar
  21. Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts, algorithms and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Huson DH, Scornavacca C (2011) A survey of combinatorial methods for phylogenetic networks. Genome Biol Evol 3:23–35CrossRefGoogle Scholar
  23. Jansson J, Sung WK (2006) Inferring a level-1 phylogenetic network from a dense set of rooted triplets. Theor Comput Sci 363(1):60–68MathSciNetCrossRefzbMATHGoogle Scholar
  24. Kanj IA, Nakhleh L, Than C, Xia G (2008) Seeing the trees and their branches in the network is hard. Theor Comput Sci 401(1):153–164MathSciNetCrossRefzbMATHGoogle Scholar
  25. Kubatko LS (2009) Identifying hybridization events in the presence of coalescence via model selection. Syst Biol 58(5):478–488CrossRefGoogle Scholar
  26. Mallet J (2007) Hybrid speciation. Nature 446(7133):279–283CrossRefGoogle Scholar
  27. Meng C, Kubatko LS (2009) Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model. Theor Popul Biol 75(1):35–45CrossRefzbMATHGoogle Scholar
  28. Morrison DA (2011) Introduction to Phylogenetic Networks. RJR ProductionsGoogle Scholar
  29. Nolte AW, Tautz D (2010) Understanding the onset of hybrid speciation. Trends Genet 26(2):54–58CrossRefGoogle Scholar
  30. Pardi F, Scornavacca C (2015) Reconstructible phylogenetic networks: do not distinguish the indistinguishable. PLoS Comput Biol 11(4):e1004135CrossRefGoogle Scholar
  31. Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36(1):75–97CrossRefGoogle Scholar
  32. Rambaut A, Posada D, Crandall K, Holmes E (2004) The causes and consequences of HIV evolution. Nat Rev Genet 5(1):52–61CrossRefGoogle Scholar
  33. van Iersel L (2009) Algorithms, haplotypes and phylogenetic networks. Ph.D. thesis, Eindhoven University of TechnologyGoogle Scholar
  34. van Iersel L, Moulton V (2014) Trinets encode tree-child and level-2 phylogenetic networks. J Math Biol 68(7):1707–1729MathSciNetzbMATHGoogle Scholar
  35. van Iersel L, Semple C, Steel M (2010) Locating a tree in a phylogenetic network. Inf Process Lett 110(23):1037–1043Google Scholar
  36. Vuilleumier S, Bonhoeffer S (2015) Contribution of recombination to the evolutionary history of HIV. Curr Opin HIV AIDS 10(2):84–89CrossRefGoogle Scholar
  37. Warnow TJ (1994) Tree compatibility and inferring evolutionary history. J Algorithms 16(3):388–407MathSciNetCrossRefzbMATHGoogle Scholar
  38. Yu Y, Degnan JH, Nakhleh L (2012) The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genet 8(4):e1002660CrossRefGoogle Scholar
  39. Yu Y, Dong J, Liu KJ, Nakhleh L (2014) Maximum likelihood inference of reticulate evolutionary histories. PNAS 111(46):16448–16453CrossRefGoogle Scholar
  40. Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr Biol 21(7):R242–R246CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2016

Authors and Affiliations

  • Philippe Gambette
    • 1
  • Leo van Iersel
    • 2
  • Steven Kelk
    • 3
  • Fabio Pardi
    • 4
  • Celine Scornavacca
    • 5
  1. 1.LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEMUniversité Paris-EstMarne-la-ValléeFrance
  2. 2.Delft Institute of Applied MathematicsDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of Data Science and Knowledge Engineering (DKE)Maastricht UniversityMaastrichtThe Netherlands
  4. 4.Institut de Biologie Computationnelle (IBC) Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM)CNRS, Université de MontpellierMontpellierFrance
  5. 5.Institut de Biologie Computationnelle (IBC) Institut des Sciences de l’EvolutionMontpellierFrance

Personalised recommendations