Bulletin of Mathematical Biology

, Volume 78, Issue 2, pp 293–321 | Cite as

Choice of Antiviral Allocation Scheme for Pandemic Influenza Depends on Strain Transmissibility, Delivery Delay and Stockpile Size

  • Michael Lydeamore
  • Nigel Bean
  • Andrew J. Black
  • Joshua V. Ross
Original Article

Abstract

Recently, pandemic response has involved the use of antivirals. These antivirals are often allocated to households dynamically throughout the pandemic with the aim being to retard the spread of infection. A drawback of this is that there is a delay until infection is confirmed and antivirals are delivered. Here an alternative allocation scheme is considered, where antivirals are instead preallocated to households at the start of a pandemic, thus reducing this delay. To compare these two schemes, a deterministic approximation to a novel stochastic household model is derived, which allows efficient computation of key quantities such as the expected epidemic final size, expected early growth rate, expected peak size and expected peak time of the epidemic. It is found that the theoretical best choice of allocation scheme depends on strain transmissibility, the delay in delivering antivirals under a dynamic allocation scheme and the stockpile size. A broad summary is that for realistic stockpile sizes, a dynamic allocation scheme is superior with the important exception of the epidemic final size under a severe pandemic scenario. Our results, viewed in conjunction with the practical considerations of implementing a preallocation scheme, support a focus on attempting to reduce the delay in delivering antivirals under a dynamic allocation scheme during a future pandemic.

Keywords

Antivirals Epidemic Household model Pandemic influenza 

References

  1. Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, OxfordGoogle Scholar
  2. Australian Bureau of Statistics (2011) NPRD number of persons usually resident in dwelling. Census 2011Google Scholar
  3. Ball F (1996) Threshold behaviour in stochastic epidemics among households. In: Heyde C, Prohorov Y, Pyke R, Rachev S (eds) Athens conference on applied probability and time series analysis, Lecture Notes in Statistics, vol 114, pp 253–266. Springer New York. doi:10.1007/978-1-4612-0749-8
  4. Ball F, Donnelly P (1993) Branching process approximation of epidemic models. Theory Probab Appl 37(1):119–121CrossRefGoogle Scholar
  5. Ball F, Mollison D, Scalia-Tomba G (1997) Epidemics with two levels of mixing. Ann Appl Probab 7(1):46–89CrossRefMathSciNetMATHGoogle Scholar
  6. Ball FG, Lyne OD (2002) Optimal vaccination policies for stochastic epidemics among a population of households. Math Biosci 177:333–354CrossRefMathSciNetGoogle Scholar
  7. Bekerman E, Einav S (2015) Combating emerging viral threats. Science 348(6232):282–283CrossRefGoogle Scholar
  8. Black AJ, House T, Keeling MJ, Ross JV (2013) Epidemiological consequences of household-based antiviral prophylaxis for pandemic influenza. J R Soc Interface. doi:10.1098/rsif.2012.1019 Google Scholar
  9. Black AJ, House T, Keeling MJ, Ross JV (2014) The effect of clumped population structure on the variability of spreading dynamics. J Theor Biol 359:45–53CrossRefMathSciNetGoogle Scholar
  10. Brauer F (2001) Mathematical models in population biology and epidemiology, vol 1. Springer, BerlinCrossRefMATHGoogle Scholar
  11. Carrasco LR, Lee VJ, Chen MI, Matchar DB, Thompson JP, Cook AR (2011) Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective. J R Soc Interface 8(62):1307–1313. doi:10.1098/rsif.2010.0715 CrossRefGoogle Scholar
  12. Carrat F, Sahler C, Rogez S, Leruez-Ville M, Freymuth F, Le Gales C, Bungener M, Housset B, Nicolas M, Rouzioux C (2002) Influenza burden of illness: estimates from a national prospective survey of household contacts in France. Arch Intern Med 162(16):1842–1848CrossRefGoogle Scholar
  13. Cauchemez S, Carrat F, Viboud C, Valleron A, Boelle P (2004) A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Stat Med 23:3469–3487CrossRefGoogle Scholar
  14. Cauchemez S, Donnelly C, Reed C, Ghani A, Fraser C, Kent C, Finelli L, Ferguson N (2009) Household transmission of 2009 pandemic influenza A(H1N1) virus in the United States. N Engl J Med 361:2619–2627CrossRefGoogle Scholar
  15. Colizza V, Barrat A, Barthelemy M (2007) Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 4(1):e13. doi:10.1371/journal.pmed.0040013 CrossRefGoogle Scholar
  16. Commonwealth of Australia (2009) Australian Health Management Plan for Pandemic InfluenzaGoogle Scholar
  17. Commonwealth of Australia (2011) Review of Australia’s health sector response to pandemic (H1N1) 2009: lessons identifiedGoogle Scholar
  18. Cross PC, Johnson PL, Lloyd-Smith JO, Getz WM (2007) Utility of R0 as a predictor of disease invasion in structured populations. J R Soc Interface 4(13):315–324CrossRefGoogle Scholar
  19. Fedson D (2003) Pandemic influenza and the global vaccine supply. Clin Infect Dis 36(12):1552–1561CrossRefGoogle Scholar
  20. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS (2006) Strategies for mitigating an influenza pandemic. Nature 442(7101):448–452CrossRefGoogle Scholar
  21. Ghani A, Baguelin M, Griffin J, Flasche S, van Hoek AJ, Cauchemez S, Donnelly C, Robertson C, White M, Truscott J et al (2009) The early transmission dynamics of H1N1pdm influenza in the United Kingdom. PLoS Curr 1:RRN1130Google Scholar
  22. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRefGoogle Scholar
  23. Glass K, McCaw J, McVernon J (2011) Incorporating population dynamics into household models of infectious disease transmission. Epidemics 3(3):152–158CrossRefGoogle Scholar
  24. Goldstein E, Cowling BJ, O’Hagan JJ, Danon L, Fang VJ, Hagy A, Miller JC, Reshef D, Robins J, Biedrzycki P et al (2010) Oseltamivir for treatment and prevention of pandemic influenza A/H1N1 virus infection in households, Milwaukee, 2009. BMC Infect Dis 10:211CrossRefGoogle Scholar
  25. Goldstein E, Miller JC, O’Hagan J, Lipsitch M (2010) Predispensing of antivirals to high-risk individuals in an influenza pandemic. Influenza Other Respir Viruses 4(2):101–112. doi:10.1111/j.1750-2659.2009.00128.x.Predispensing CrossRefGoogle Scholar
  26. Hayden FG, Belshe R, Villanueva C, Lanno R, Hughes C, Small I, Dutkowski R, Ward P, Carr J (2004) Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with or without postexposure prophylaxis. J Infect Dis 189(3):440–449CrossRefGoogle Scholar
  27. House T, Inglis N, Ross J, Wilson F, Suleman S, Edeghere O, Smith G, Olowokure B, Keeling M (2012) Estimation of outbreak severity and transmissibility: influenza A(H1N1)pdm09 in households. BMC Med 10(1):117CrossRefGoogle Scholar
  28. House T, Keeling MJ (2008) Deterministic epidemic models with explicit household structure. Math Biosci 213:29–39. doi:10.1016/j.mbs.2008.01.011 CrossRefMathSciNetMATHGoogle Scholar
  29. Jefferson T, Jones MA, Doshi P, Del Mar CB, Heneghan CJ, Hama R, Thompson MJ (2012) Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst Rev 1(1):18–35Google Scholar
  30. Jordan DW, Smith P (1987) Nonlinear ordinary differential equations. Clarendon Press, OxfordMATHGoogle Scholar
  31. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, PrincetonMATHGoogle Scholar
  32. Keeling MJ, Ross JV (2015) Optimal prophylactic vaccination in segregated populations: when can we improve on the equalising strategy? Epidemics 11:7–13CrossRefGoogle Scholar
  33. Kurtz TG (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. J Appl Prob 7:49–58CrossRefMathSciNetMATHGoogle Scholar
  34. Kwok KO, Leung GM, Mak P, Riley S (2013) Antiviral stockpiles for influenza pandemics from the household perspective: treatment alone versus treatment with prophylaxis. Epidemics 5(2):92–97CrossRefGoogle Scholar
  35. Longini IM, Halloran ME, Nizam A, Yang Y (2004) Containing pandemic influenza with antiviral agents. Am J Epidemiol 159(7):623–633CrossRefGoogle Scholar
  36. Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME (2005) Containing pandemic influenza at the source. Science 309(5737):1083–1087CrossRefGoogle Scholar
  37. Matrajt L, Halloran M, Longini IM Jr (2013) Optimal vaccine allocation for the early mitigation of pandemic influenza. PLoS Comput Biol 9(3):e1002964. doi:10.1371/journal.pcbi.1002964 CrossRefMathSciNetGoogle Scholar
  38. Merler S, Ajelli M, Rizzo C (2009) Age-prioritized use of antivirals during an influenza pandemic. BMC Infect Dis 9:117CrossRefGoogle Scholar
  39. Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432(7019):904–906CrossRefGoogle Scholar
  40. Pandemic Influenza Preparedness Team (2011) Department of Health: National Pandemic Flu Service: an evaluationGoogle Scholar
  41. Pellis L, Ball F, Trapman P (2012) Reproduction numbers for epidemic models with households and other social structures. I. Definition and calculation of \(R_0\). Math Biosci 235(1):85–97. doi:10.1016/j.mbs.2011.10.009 CrossRefMathSciNetMATHGoogle Scholar
  42. Public Health England (2014) Pandemic influenza strategic frameworkGoogle Scholar
  43. Ross J, House T, Keeling M (2010) Calculation of disease dynamics in a population of households. PLoS One 5(3):e9666. doi:10.1371/journal.pone.0009666 CrossRefGoogle Scholar
  44. Stiver G (2003) The treatment of influenza with antiviral drugs. Can Med Assoc J 168(1):49–57Google Scholar
  45. U.S. Department of Health and Human Services (2005) HHS pandemic influenza planGoogle Scholar
  46. Webby R, Perez D, Coleman J, Guan Y, Knight J, Govorkova E, McClain-Moss L, Peiris J, Rehg J, Tuomanen E, Webster R (2004) Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363:1099–1103CrossRefGoogle Scholar
  47. Webby R, Webster R (2003) Are we ready for pandemic influenza? Science 302(5650):1519–1522CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2016

Authors and Affiliations

  • Michael Lydeamore
    • 1
    • 3
  • Nigel Bean
    • 1
    • 2
  • Andrew J. Black
    • 1
  • Joshua V. Ross
    • 1
  1. 1.School of Mathematical SciencesThe University of AdelaideAdelaideAustralia
  2. 2.ARC Centre of Excellence for Mathematical and Statistical FrontiersParkvilleAustralia
  3. 3.School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia

Personalised recommendations