Bulletin of Mathematical Biology

, Volume 76, Issue 1, pp 201–224 | Cite as

Autocatalytic Sets and Biological Specificity

Original Article

Abstract

A universal feature of the biochemistry of any living system is that all the molecules and catalysts that are required for reactions of the system can be built up from an available food source by repeated application of reactions from within that system. RAF (reflexively autocatalytic and food-generated) theory provides a formal way to study such processes. Beginning with Kauffman’s notion of “collectively autocatalytic sets,” this theory has been further developed over the last decade with the discovery of efficient algorithms and new mathematical analysis. In this paper, we study how the behaviour of a simple binary polymer model can be extended to models where the pattern of catalysis more precisely reflects the ligation and cleavage reactions involved. We find that certain properties of these models are similar to, and can be accurately predicted from, the simple binary polymer model; however, other properties lead to slightly different estimates. We also establish a number of new results concerning the structure of RAFs in these systems.

Keywords

Origin of life Autocatalytic sets Template-based catalysis Wills–Henderson model 

References

  1. Bonchev, D., & Mekenyan, O. (1994). Graph theoretical approaches to chemical reactivity. Dordrecht: Kluwer. CrossRefGoogle Scholar
  2. Crick, F. H. C. (1958). On protein synthesis. Symp. Soc. Exp. Biol., 12, 138–163. Google Scholar
  3. Crick, F. H. C. (1970). Central dogma of molecular biology. Nature, 227, 561–563. CrossRefGoogle Scholar
  4. Eigen, M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, 465–523. CrossRefGoogle Scholar
  5. Eigen, M., & Schuster, P. (1979). The hypercycle. Berlin: Springer. CrossRefGoogle Scholar
  6. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman. MATHGoogle Scholar
  7. Hordijk, W., & Steel, M. (2004). Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J. Theor. Biol., 227(4), 451–461. MathSciNetCrossRefGoogle Scholar
  8. Hordijk, W., & Steel, M. (2012a). Autocatalytic sets extended: dynamics, inhibition, and a generalization. J. Syst. Chem., 3, 5. CrossRefGoogle Scholar
  9. Hordijk, W., & Steel, M. (2012b). Predicting template-based catalysis rates in a simple catalytic reaction model. J. Theor. Biol., 295, 132–138. MathSciNetCrossRefGoogle Scholar
  10. Hordijk, W., & Steel, M. (2013). A formal model of autocatalytic sets emerging in an RNA replicator system. J. Syst. Chem., 4, 3. CrossRefGoogle Scholar
  11. Hordijk, W., Kauffman, S. A., & Steel, M. (2011). Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. Int. J. Mol. Sci., 12(5), 3085–3101. CrossRefGoogle Scholar
  12. Hordijk, W., Steel, M., & Kauffman, S. (2012). The structure of autocatalytic sets: evolvability, enablement, and emergence. Acta Biotheor., 60(4), 379–392. CrossRefGoogle Scholar
  13. Kauffman, S. A. (1971). Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. J. Cybern., 1(1), 71–96. MathSciNetCrossRefGoogle Scholar
  14. Kauffman, S. A. (1986). Autocatalytic sets of proteins. J. Theor. Biol., 119, 1–24. CrossRefGoogle Scholar
  15. Kauffman, S. A. (1993). The origins of order. Oxford: Oxford University Press. Google Scholar
  16. Mincheva, M., & Roussel, M. R. (2007). Graph-theoretic methods for the analysis of chemical and biochemical networks, I: multistability and oscillations in ordinary differential equation models. J. Math. Biol., 55, 61–86. MathSciNetCrossRefMATHGoogle Scholar
  17. Mossel, E., & Steel, M. (2005). Random biochemical networks: the probability of self-sustaining autocatalysis. J. Theor. Biol., 233(3), 327–336. MathSciNetCrossRefGoogle Scholar
  18. Schrödinger, E. (1944). What is life? Cambridge: Cambridge University Press. Google Scholar
  19. Steel, M. (2000). The emergence of a self-catalysing structure in abstract origin-of-life models. Appl. Math. Lett., 3, 91–95. MathSciNetCrossRefMATHGoogle Scholar
  20. Steel, M., Hordijk, W., & Smith, J. (2013). Minimal autocatalytic networks. J. Theor. Biol., 332, 96–107. MathSciNetCrossRefMATHGoogle Scholar
  21. Vaidya, N., Manapat, M. L., Chen, I. A., Xulvi-Brunet, R., Hayden, E. J., & Lehman, N. (2012). Spontaneous network formation among cooperative RNA replicators. Nature, 491, 72–77. CrossRefGoogle Scholar
  22. Vasas, V., Fernando, C., Santos, M., Kauffman, S., & Sathmáry, E. (2012). Evolution before genes. Biol. Direct, 7, 1. CrossRefGoogle Scholar
  23. Watson, J. D., & Crick, F. H. C. (1953). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, 964–967. CrossRefGoogle Scholar
  24. Wills, P., & Henderson, L. (2000). Self-organisation and information-carrying capacity of collectively autocatalytic sets of polymers: ligation systems. In Y. Bar-Yam (Ed.), Unifying themes in complex systems: proceedings of the first international conference on complex systems (pp. 613–623). Jackson: Perseus. Google Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.SmartAnalytiX.comLausanneSwitzerland
  2. 2.Intergrative TranscriptomicsUniversität TübingenTübingenGermany
  3. 3.Dept. of PhysicsUniversity of AucklandAucklandNew Zealand
  4. 4.Allan Wilson Centre for Molecular Ecology and EvolutionUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations