Advertisement

Bulletin of Mathematical Biology

, Volume 76, Issue 1, pp 184–200 | Cite as

Optimization and Phenotype Allocation

  • Jürgen Jost
  • Ying WangEmail author
Original Article

Abstract

We study the phenotype allocation problem for the stochastic evolution of a multitype population in a random environment. Our underlying model is a multitype Galton–Watson branching process in a random environment. In the multitype branching model, different types denote different phenotypes of offspring, and offspring distributions denote the allocation strategies. Two possible optimization targets are considered: the long-term growth rate of the population conditioned on nonextinction, and the extinction probability of the lineage. In a simple and biologically motivated case, we derive an explicit formula for the long-term growth rate using the random Perron–Frobenius theorem, and we give an approximation to the extinction probability by a method similar to that developed by Wilkinson. Then we obtain the optimal strategies that maximize the long-term growth rate or minimize the approximate extinction probability, respectively, in a numerical example. It turns out that different optimality criteria can lead to different strategies.

Keywords

Branching process Random environment Optimization Phenotype allocation 

Notes

Acknowledgements

We would like to thank Professor Rüdiger Frey for helpful discussions and comments. We would like to thank the referees for their thoughtful comments and suggestions, especially for drawing our attention to Brennan and Lo (2011).

References

  1. Arnold, L., Gundlach, V., & Demetrius, L. (1994). Evolutionary formalism for products of positive random matrices. Ann. Appl. Probab., 4(3), 859–901. MathSciNetCrossRefzbMATHGoogle Scholar
  2. Athreya, K., & Karlin, S. (1970). Branching processes with random environments. Bull. Am. Math. Soc., 76, 865–870. MathSciNetCrossRefzbMATHGoogle Scholar
  3. Athreya, K., & Karlin, S. (1971a). Branching processes with random environments, I: extinction probability. Ann. Math. Stat., 42, 1499–1520. MathSciNetCrossRefzbMATHGoogle Scholar
  4. Athreya, K., & Karlin, S. (1971b). On branching processes with random environments, II: limit theorems. Ann. Math. Stat., 42, 1843–1858. MathSciNetCrossRefzbMATHGoogle Scholar
  5. Athreya, K., & Ney, P. (1972). Branching processes. Berlin: Springer. CrossRefzbMATHGoogle Scholar
  6. Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C., & Rainey, P. B. (2009). Experimental evolution of bet hedging. Nature, 462, 90–93. CrossRefGoogle Scholar
  7. Bergstrom, C., & Lachmann, M. (2004). Shannon information and biological fitness. In Information theory workshop IEEE (pp. 50–54) CrossRefGoogle Scholar
  8. Brennan, T., & Lo, A. (2011). The origin of behavior. Q. J. Finance, 1(1), 55–108. CrossRefGoogle Scholar
  9. Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theor. Biol., 12, 119–129. CrossRefGoogle Scholar
  10. Cooper, W., & Kaplan, R. (1982). Adaptive ‘coin-flipping’: a decision-theoretic examination of natural selection for random individual variation. J. Theor. Biol., 94, 135–151. MathSciNetCrossRefGoogle Scholar
  11. Dempster, E. (1955). Maintenance of genetic heterogeneity. Cold Spring Harbor Symp. Quant. Biol., 20, 25–32. CrossRefGoogle Scholar
  12. Dombry, C., Mazza, C., & Bansaye, V. (2011). Phenotypic diversity and population growth in a fluctuating environment. Adv. Appl. Probab., 43, 375–398. MathSciNetCrossRefzbMATHGoogle Scholar
  13. Donaldson-Matasci, M., Lachmann, M., & Bergstrom, C. (2008). Phenotypic diversity as an adaptation to environmental uncertainty. Evol. Ecol. Res., 10, 493–515. Google Scholar
  14. Donaldson-Matasci, M., Bergstrom, C., & Lachmann, M. (2010). The fitness value of information. Oikos, 119, 219–230. CrossRefGoogle Scholar
  15. Furstenberg, H., & Kesten, H. (1960). Products of random matrices. Ann. Math. Stat., 31, 457–469. MathSciNetCrossRefzbMATHGoogle Scholar
  16. Grafen, A. (1999). Formal darwinism, the individual-as-maximizing-agent analogy and bet-hedging. Proc. R. Soc. Lond. B, 266, 799–803. CrossRefGoogle Scholar
  17. Haccou, P., & Iwasa, Y. (1995). Optimal mixed strategies in stochastic environments. Theor. Popul. Biol., 47, 212–243. CrossRefzbMATHGoogle Scholar
  18. Haccou, P., Jagers, P., & Vatutin, V. (2005). Branching processes: variation, growth, and extinction of populations. Cambridge: Cambride University Press. CrossRefzbMATHGoogle Scholar
  19. Hutton, J. (1987). Incubation temperatures, sex ratios and sex determination in a population of nile crocodiles (crocodylus niloticus). J. Zool., 211, 143–155. CrossRefGoogle Scholar
  20. Jost, J., & Pepper, J. (2008). Individual optimization efforts and population dynamics: a mathematical model for the evolution of resource allocation strategies, with applications to reproductive and mating systems. Theory Biosci., 127(1), 31–43. CrossRefGoogle Scholar
  21. Kussell, E., & Leibler, S. (2005). Phenotypic diversity, population growth and information in fluctuating environments. Science, 309, 2075–2078. CrossRefGoogle Scholar
  22. Levins, R. (1962). The theory of fitness in a heterogeneous environment, I: the fitness set and adaptive function. Am. Nat., 96, 361–373. CrossRefGoogle Scholar
  23. Levins, R. (1968). Evolution in changing environments. Princeton: Princeton University Press. Google Scholar
  24. Seger, J., & Brockmann, H. (1987). What is bet-hedging? In P. Harvey & L. Partridge (Eds.), Oxford surveys in evolutionary biology (Vol. 4, pp. 182–211). Oxford: Oxford University Press. Google Scholar
  25. Simons, A. (2009). Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proc. R. Soc. B, 276, 1987–1992. CrossRefGoogle Scholar
  26. Simons, A. (2011). Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc. R. Soc. B, 278, 1601–1609. CrossRefGoogle Scholar
  27. Smith, W., & Wilkinson, W. (1969). On branching processes in random environments. Ann. Math. Stat., 40, 814–827. MathSciNetCrossRefzbMATHGoogle Scholar
  28. Tanny, D. (1977). Limit theorems for branching processes in a random environment. Ann. Probab., 5(1), 100–116. MathSciNetCrossRefzbMATHGoogle Scholar
  29. Tanny, D. (1981). On multitype branching processes in random environments. Adv. Appl. Probab., 13, 464–497. MathSciNetCrossRefzbMATHGoogle Scholar
  30. Tuljapurkar, S. (1982). Population dynamics in variable environments, III: evolutionary dynamics of r-selection. Theor. Popul. Biol., 21, 141–165. MathSciNetCrossRefzbMATHGoogle Scholar
  31. Tuljapurkar, S. (1990). Population dynamics in variable environments. Berlin: Springer. CrossRefzbMATHGoogle Scholar
  32. Valenzuela, N. & Lance, V. (Eds.) (2004). Temperature dependent sex determination in vertebrates. Washington: Smithsonian Books. Google Scholar
  33. Wang, Y. (2010). Branching processes: optimization, variational characterization, and continuous approximation. Ph.D. thesis, University of Leipzig. Google Scholar
  34. Wang, Y. (2013a). Variational characterization of multitype galton-watson branching processes. Acta Math. Appl. Sin. doi: 10.1007/s10255-014-0266-2.
  35. Wang, Y. (2013b). Parallel mutation-reproduction processes in random environments. Commun. Stoch. Anal., 7(1), 113–123. MathSciNetGoogle Scholar
  36. Wilkinson, W. (1969). On calculating extinction probabilities for branching processes in random environments. J. Appl. Probab., 6, 478–492. MathSciNetCrossRefzbMATHGoogle Scholar
  37. Yoshimura, J., & Clark, C. (1991). Individual adaptations in stochastic environments. Evol. Ecol., 5, 173–192. CrossRefGoogle Scholar
  38. Yoshimura, J., & Jansen, V. (1996). Evolution and population dynamics in stochastic environments. Res. Popul. Ecol., 38, 165–182. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Department of Mathematics and Computer ScienceLeipzig UniversityLeipzigGermany
  3. 3.Santa Fe Institute for the Sciences of ComplexitySanta FeUSA
  4. 4.Warwick Systems Biology CentreThe University of WarwickCoventryUK

Personalised recommendations