Advertisement

Bulletin of Mathematical Biology

, Volume 75, Issue 12, pp 2346–2371 | Cite as

Reaction-Diffusion Patterns in Plant Tip Morphogenesis: Bifurcations on Spherical Caps

  • Wayne NagataEmail author
  • Hamid R. Z. Zangeneh
  • David M. Holloway
Original Article

Abstract

We study a chemical reaction-diffusion model (the Brusselator) for pattern formation on developing plant tips. A family of spherical cap domains is used to represent tip flattening during development. Applied to conifer embryos, we model the chemical prepatterning underlying cotyledon (“seed leaf”) formation, and demonstrate the dependence of patterns on tip flatness, radius, and precursor concentrations. Parameters for the Brusselator in spherical cap domains can be chosen to give supercritical pitchfork bifurcations of patterned solutions of the nonlinear reaction-diffusion system that correspond to the cotyledon patterns that appear on the flattening tips of conifer embryos.

Keywords

Reaction-diffusion patterns Plant development 

Notes

Acknowledgements

We thank NSERC (Canada), Isfahan University of Technology and British Columbia Institute of Technology for financial support, T.C. Lacalli for stimulating discussions, and P. von Aderkas for the images in Fig. 1.

References

  1. Baker, R. E., & Maini, P. K. (2007). A mechanism for morphogen-controlled domain growth. J. Math. Biol., 54, 597–622. MathSciNetCrossRefzbMATHGoogle Scholar
  2. Barrass, I., Crampin, E. G., & Maini, P. K. (2006). Mode transitions in a model reaction-diffusion system driven by domain growth and noise. Bull. Math. Biol., 68, 981–995. MathSciNetCrossRefGoogle Scholar
  3. Barreira, R., Elliott, C. M., & Madzvamuse, A. (2011). The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol., 63, 1095–1119. MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bauer, H. F. (1986). Tables of the roots of the associated Legendre function with respect to degree. Math. Comput., 46, 601–602; S29–S41. CrossRefzbMATHMathSciNetGoogle Scholar
  5. Bilsborough, G. D., Runions, A., Barkoulas, M., Jenkins, H. W., Hasson, A., Galinha, C., Laufs, P., Hay, A., Prusinkiewicz, P., & Tsiantis, M. (2011). Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. USA, 108, 3424–3429. CrossRefGoogle Scholar
  6. Carr, J. (1981). Applications of centre manifold theory. New York: Springer. CrossRefzbMATHGoogle Scholar
  7. Cosgrove, D. J. (1996). Plant cell enlargement and the action of expansins. BioEssays, 18, 533–540. CrossRefGoogle Scholar
  8. Crampin, E. J., Hackborn, W. W., & Maini, P. K. (2002). Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol., 64, 747–769. CrossRefGoogle Scholar
  9. de Reuille, P. B., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., & Traas, J. (2006). Computer simulations reveal properties of the cell-cell signalling network at the shoot apex in Arabidopsis. Proc. Natl. Acad. Sci. USA, 103, 1627–1632. CrossRefGoogle Scholar
  10. Digiuni, S., Schellmann, S., Geier, F., Greese, B., Pesch, M., Wester, K., Dartan, B., Mach, V., Srinivas, B. P., Timmer, J., Fleck, C., & Hülskamp, M. (2008). A competitive complex formation mechanism underlies trichome patterning in Arabidopsis leaves. Mol. Syst. Biol., 4, 217. CrossRefGoogle Scholar
  11. Fleming, A. J., McQueen-Mason, S., Mandel, T., & Kuhlemeier, C. (1997). Induction of leaf primordia by the cell wall protein expansin. Science, 276, 1415–1418. CrossRefGoogle Scholar
  12. Fujita, H., Toyokura, K., Okada, K., & Kawaguchi, M. (2011). Reaction-diffusion mechanism in shoot apical meristem of plants. PLoS ONE, 6, e18243. CrossRefGoogle Scholar
  13. Garzón-Alvarado, D. A., Martinez, A. M. R., & Segrera, D. L. L. (2012). Appearance and formation of seed and pericarp may be explained by a reaction-diffusion mechanism? A mathematical modeling. Math. Comput. Model., 55, 853–860. CrossRefzbMATHMathSciNetGoogle Scholar
  14. Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12, 30–39. CrossRefzbMATHGoogle Scholar
  15. Hakman, I., Hallberg, H., & Palovaara, J. (2009). The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picaea abies somatic embryo development. Tree Physiol., 29, 483–496. CrossRefGoogle Scholar
  16. Harrison, L. G. (2011). The shaping of life. Cambridge: Cambridge University Press. Google Scholar
  17. Harrison, L. G., & Hillier, N. A. (1985). Quantitative control of Acetabularia morphogenesis by extracellular calcium: a test of kinetic theory. J. Theor. Biol., 114, 177–192. CrossRefGoogle Scholar
  18. Harrison, L. G., & Kolar, M. (1988). Coupling between reaction-diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J. Theor. Biol., 130, 493–515. MathSciNetCrossRefGoogle Scholar
  19. Harrison, L. G., & von Aderkas, P. (2004). Spatially quantitative control of the number of cotyledons in a clonal population of somatic embryos of hybrid larch Larix × leptoeuropaea. Ann. Bot., 93, 423–434. CrossRefGoogle Scholar
  20. Harrison, L. G., Snell, J., Verdi, R., Vogt, D. E., Zeiss, G. D., & Green, B. R. (1981). Hair morphogenesis in Acetabularia mediterranea: temperature-dependent spacing and models of morphogen waves. Protoplasma, 106, 211–221. CrossRefGoogle Scholar
  21. Harrison, L. G., Graham, K. T., & Lakowski, B. C. (1988). Calcium localization during Acetabularia whorl formation: evidence supporting a two-stage hierarchical mechanism. Development, 104, 255–262. Google Scholar
  22. Harrison, L. G., Donaldson, G., Lau, W., Lee, M., Lin, B. P., Lohachitranont, S., Setyawati, I., & Yue, J. (1997). CaEGTA uncompetitively inhibits calcium activation of whorl morphogenesis in Acetabularia. Protoplasma, 196, 190–196. CrossRefGoogle Scholar
  23. Harrison, L. G., Wehner, S., & Holloway, D. M. (2001). Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion to growth. Faraday Discuss., 120, 277–294. CrossRefGoogle Scholar
  24. Harrison, L. G., Adams, R. J., & Holloway, D. M. (2012). Dynamic regulation of growing domains for elongating and branching morphogenesis in plants. Biosystems, 109, 488–497. CrossRefGoogle Scholar
  25. Holloway, D. M. (2010). The role of chemical dynamics in plant morphogenesis. Biochem. Soc. Trans., 38, 645–650. CrossRefGoogle Scholar
  26. Holloway, D. M. (2012). The chemical kinetics of shape determination in plants. In V. Patel (Ed.), Chemical kinetics (pp. 203–226). Rijeka: InTech. Available at http://www.intechopen.com/articles/show/title/the-chemical-kinetics-of-shape-determination-in-plants. Google Scholar
  27. Holloway, D. M., & Harrison, L. G. (1995). Order and localization in reaction-diffusion pattern. Physica A, 222, 210–233. CrossRefGoogle Scholar
  28. Holloway, D. M., & Harrison, L. G. (1999). Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction-diffusion patterned catalysis of cell surface growth. Philos. Trans. R. Soc. Lond. B, 354, 417–433. CrossRefGoogle Scholar
  29. Holloway, D. M., & Harrison, L. G. (2008). Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. Ann. Bot., 101, 361–374. CrossRefGoogle Scholar
  30. Iron, D., Ward, M. J., & Wei, J. C. (2001). The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Physica D, 150, 25–62. MathSciNetzbMATHGoogle Scholar
  31. Jönsson, H., Heisler, M. G., Reddy, G. V., Agrawal, V., Gor, V., Shapiro, B. E., Mjolsness, E., & Meyerowitz, E. M. (2005). Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics, 21[Suppl.], i232–i240. CrossRefGoogle Scholar
  32. Jönsson, H., Heisler, M. G., Shapiro, B. E., Mjolsness, E., & Meyerowitz, E. M. (2006). An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA, 103, 1633–1638. CrossRefGoogle Scholar
  33. Lacalli, T. C. (1981). Dissipative structures and morphogenetic pattern in unicellular algae. Philos. Trans. R. Soc. Lond. B, 294, 547–588. CrossRefGoogle Scholar
  34. Madzvamuse, A., Gaffney, E. A., & Maini, P. K. (2010). Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol., 61, 113–164. MathSciNetCrossRefzbMATHGoogle Scholar
  35. Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press. Available at http://www.eb.tuebingen.mpg.de/departments/former-departments/h-meinhardt/82-book/Bur82.htm. Google Scholar
  36. Milani, P., Gholamirad, M., Traas, J., Arnéodo, A., Boudaoud, A., Argoul, F., & Hamant, O. (2011). In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J., 67, 1116–1123. CrossRefGoogle Scholar
  37. Miura, T., Shiota, K., Morriss-Kay, G., & Maini, P. K. (2006). Mixed-mode pattern in Doublefoot mutant mouse limb—Turing reaction-diffusion model on a growing domain during limb develpment. J. Theor. Biol., 240, 562–573. MathSciNetCrossRefGoogle Scholar
  38. Nagata, W., Harrison, L. G., & Wehner, S. (2003). Reaction-diffusion models of growing plant tips: bifurcations on hemispheres. Bull. Math. Biol., 65, 571–607. CrossRefGoogle Scholar
  39. Neville, A. A., Matthews, P. C., & Byrne, H. M. (2006). Interactions between pattern formation and domain growth. Bull. Math. Biol., 68, 1975–2003. MathSciNetCrossRefzbMATHGoogle Scholar
  40. Palin, R., & Geitmann, A. (2012). The role of pectin in plant morphogenesis. Biosystems, 109, 397–402. CrossRefGoogle Scholar
  41. Palin, R. J. (2011). A comparison of cell wall properties of Arabidopsis thaliana. PhD thesis, University of Birmingham. Google Scholar
  42. Peaucelle, A., Braybrook, S. A., Le Guillou, L., Bron, E., Kuhlemeier, C., & Höfte, H. (2011). Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol., 21, 1720–1726. CrossRefGoogle Scholar
  43. Plaza, R. G., Sánchez-Garduño, F., Padilla, P., Barrio, R. A., & Maini, P. K. (2004). The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ., 16, 1093–1121. CrossRefzbMATHMathSciNetGoogle Scholar
  44. Prigogine, I., & Lefever, R. (1968). Symmetry-breaking instabilities in dissipative systems. II. J. Chem. Phys., 48, 1695–1700. CrossRefGoogle Scholar
  45. Routier-Kierzkowska, A.-L., Weber, A., Kochova, P., Felekis, D., Nelson, B. J., Kuhlemeier, C., & Smith, R. S. (2012). Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol., 158, 1514–1522. CrossRefGoogle Scholar
  46. Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol., 81, 389–400. MathSciNetCrossRefGoogle Scholar
  47. Smith, R. S., Guyomarch, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., & Prusinkiewicz, P. (2006). A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA, 103, 1301–1306. CrossRefGoogle Scholar
  48. Turing, A. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72. CrossRefGoogle Scholar
  49. van Mourik, S., Kaufmann, K., van Dijk, A. D. J., Angenent, G. C., Merks, R. M. H., & Molenaar, J. (2012). Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS ONE, 7, e28762. CrossRefGoogle Scholar
  50. von Aderkas, P. (2002). In vitro phenotypic variation in larch cotyledon number. Int. J. Plant Sci., 163, 301–307. CrossRefGoogle Scholar
  51. Wolf, S., & Greiner, S. (2012). Growth control by cell wall pectins. Protoplasma, 249(Suppl. 2), S169–S175. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Wayne Nagata
    • 1
    Email author
  • Hamid R. Z. Zangeneh
    • 2
  • David M. Holloway
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran
  3. 3.Mathematics DepartmentBritish Columbia Institute of TechnologyBurnabyCanada

Personalised recommendations