Bulletin of Mathematical Biology

, Volume 75, Issue 11, pp 2059–2078 | Cite as

Complex Dynamics in an Eco-epidemiological Model

  • Andrew M. BateEmail author
  • Frank M. Hilker
Original Article


The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle–node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible.


Eco-epidemiology Period-doubling Chaos Bistability Tristability 



The authors would like to thank Faina Berezovsky and an anonymous reviewer for their constructive comments.


  1. Bate, A. M., & Hilker, F. M. (2013). Predator–prey oscillations can shift when diseases become endemic. J. Theor. Biol., 316, 1–8. MathSciNetCrossRefGoogle Scholar
  2. Beardmore, I., & White, K. A. J. (2001). Spreading disease through social groupings in competition. J. Theor. Biol., 212, 253–269. CrossRefGoogle Scholar
  3. Begon, M., Bennett, M., Bowers, R. G., French, S. M., Hazel, N. P., & Turner, J. (2002). A classification of transmission terns in host-microparasite models: numbers, densities and areas. Epidemiol. Infect., 129, 147–153. CrossRefGoogle Scholar
  4. Berezovskaya, F. S., Song, B., & Castillo-Chavez, C. (2010). Role of prey dispersal and refuges on predator–prey dynamics. SIAM J. Appl. Math., 70, 1821–1839. zbMATHMathSciNetCrossRefGoogle Scholar
  5. Berryman, A. A., & Millstein, J. A. (1989). Are ecological systems chaotic—and if not, why not? Trends Ecol. Evol., 4, 26–28. CrossRefGoogle Scholar
  6. Biggs, R., Carpenter, S. R., & Brock, W. A. (2009). Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl. Acad. Sci. USA, 106, 826–831. CrossRefGoogle Scholar
  7. Chattopadhyay, J., & Bairagi, N. (2001). Pelicans at risk in Salton Sea—an eco-epidemiological model. Ecol. Model., 136, 103–112. CrossRefGoogle Scholar
  8. Ferrari, M. J., Perkins, S. E., Pomeroy, L. W., & Bjørnstad, O. N. (2011). Pathogens, social networks, and the paradox of transmission scaling. Interdiscip. Perspect. Infect. Dis., 2011, 267049. Google Scholar
  9. Gilpin, M. E. (1979). Spiral chaos in a predator–prey model. Am. Nat., 113, 306–308. MathSciNetCrossRefGoogle Scholar
  10. González-Olivares, E., & Rojas-Palma, A. (2011). Multiple limit cycles in a Gause type predator–prey model with Holling type III functional response and Allee effect on prey. Bull. Math. Biol., 73, 1378–1397. zbMATHMathSciNetCrossRefGoogle Scholar
  11. Hastings, A., & Powell, T. (1991). Chaos in a three-species food chain. Ecology, 72, 896–903. CrossRefGoogle Scholar
  12. Hilker, F. M., & Malchow, H. (2006). Strange periodic attractors in prey–predator system with infected prey. Math. Popul. Stud., 13, 119–134. zbMATHMathSciNetCrossRefGoogle Scholar
  13. Hilker, F. M., & Schmitz, K. (2008). Disease-induced stabilization of predator–prey oscillations. J. Theor. Biol., 225, 299–306. CrossRefGoogle Scholar
  14. Hilker, F. M., Langlais, M., & Malchow, H. (2009). The Allee effect and infectious diseases: extinction, multistability, and the (dis-)appearance of oscillations. Am. Nat., 173, 72–88. CrossRefGoogle Scholar
  15. Hurtado, P. J., Hall, S. R., & Ellner, S. P. (2013). Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness, manuscript in review. Google Scholar
  16. Kooi, B. W., van Voorn, G. A. K., & Das, K. p. (2011). Stabilization and complex dynamics in a predator–prey model with predator suffering from an infectious disease. Ecol. Complex., 8, 113–122. CrossRefGoogle Scholar
  17. Kuznetsov, Y. A. (1995). Elements of applied bifurcation theory. New York: Springer. zbMATHCrossRefGoogle Scholar
  18. May, R. (1974). Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science, 186, 645–647. CrossRefGoogle Scholar
  19. McCallum, H., Barlow, N., & Hone, J. (2001). How should pathogen transmission be modelled? Trends Ecol. Evol., 16, 295–300. CrossRefGoogle Scholar
  20. Rosenzweig, M. L., & MacArthur, R. H. (1963). Graphical representation and stability conditions of predator–prey interactions. Am. Nat., 97, 209–223. CrossRefGoogle Scholar
  21. Scheffer, M. (2009). Critical transitions in nature and society. Princeton: Princeton University Press. Google Scholar
  22. Seydel, R. (1988). From equilibrium to chaos—practical bifurcation and stability analysis. New York: Elsevier. zbMATHGoogle Scholar
  23. Sieber, M., & Hilker, F. M. (2011). Prey, predators, parasites: intraguild predation or simpler community modules in disguise? J. Anim. Ecol., 80, 414–421. CrossRefGoogle Scholar
  24. Siekmann, I., Malchow, H., & Venturino, E. (2010). On competition of predators and prey infection. Ecol. Complex., 7, 446–457. CrossRefGoogle Scholar
  25. Stiefs, D., Venturino, E., & Feudel, U. (2009). Evidence of chaos in eco-epidemic model. Math. Biosci. Eng., 6, 855–871. zbMATHMathSciNetCrossRefGoogle Scholar
  26. Thomas, W. R., Pomerantz, M. J., & Gilpin, M. E. (1980). Chaos, asymmetric growth and group selection for dynamical stability. Ecology, 61, 1312–1320. CrossRefGoogle Scholar
  27. Upadhyay, R. K., Bairagi, N., Kundu, K., & Chattopadhyay, J. (2008). Chaos in eco-epidemiological problem of the Salton Sea and its possible control. Appl. Math. Comput., 196, 392–401. zbMATHMathSciNetCrossRefGoogle Scholar
  28. van den Driessche, P., & Watmough, J. (2002). Reproductive numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48. zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Centre for Mathematical Biology, Department of Mathematical SciencesUniversity of BathBathUK

Personalised recommendations