Advertisement

Bulletin of Mathematical Biology

, Volume 75, Issue 11, pp 2028–2058 | Cite as

Multistationarity in Sequential Distributed Multisite Phosphorylation Networks

  • Katharina Holstein
  • Dietrich Flockerzi
  • Carsten ConradiEmail author
Original Article

Abstract

Multisite phosphorylation networks are encountered in many intracellular processes like signal transduction, cell-cycle control, or nuclear signal integration. In this contribution, networks describing the phosphorylation and dephosphorylation of a protein at n sites in a sequential distributive mechanism are considered. Multistationarity (i.e., the existence of at least two positive steady state solutions of the associated polynomial dynamical system) has been analyzed and established in several contributions. It is, for example, known that there exist values for the rate constants where multistationarity occurs. However, nothing else is known about these rate constants.

Here, we present a sign condition that is necessary and sufficient for multistationarity in n-site sequential, distributive phosphorylation. We express this sign condition in terms of linear systems, and show that solutions of these systems define rate constants where multistationarity is possible. We then present, for n≥2, a collection of feasible linear systems, and hence give a new and independent proof that multistationarity is possible for n≥2. Moreover, our results allow to explicitly obtain values for the rate constants where multistationarity is possible. Hence, we believe that, for the first time, a systematic exploration of the region in parameter space where multistationarity occurs has become possible. One consequence of our work is that, for any pair of steady states, the ratio of the steady state concentrations of kinase-substrate complexes equals that of phosphatase-substrate complexes.

Keywords

Sequential distributed phosphorylation Mass-action kinetics Multistationarity Sign condition Rate constants 

Notes

Acknowledgements

KH and CC acknowledge financial support from the International Max Planck Research School in Magdeburg and the Research Center “Dynamic Systems” of the Ministry of Education of Saxony-Anhalt, respectively. Finally, we would like to thank the diligent reviewers for their valuable suggestions.

References

  1. Barik, D., Baumann, W. T., Paul, M. R., Novak, B., & Tyson, J. J. (2010). A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol., 6, 1–18. CrossRefGoogle Scholar
  2. Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell, 15(8), 3841–3862. CrossRefGoogle Scholar
  3. Conradi, C., & Flockerzi, D. (2012). Multistationarity in mass action networks with applications to ERK activation. J. Math. Biol., 65(1), 107–156. MathSciNetCrossRefzbMATHGoogle Scholar
  4. Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using chemical reaction network theory to discard a kinetic mechanism hypothesis. IET Syst. Biol., 152(4), 243–248. CrossRefGoogle Scholar
  5. Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2006). Chemical reaction network theory—a tool for systems biology. In Proceedings of the 5th MATHMOD. Google Scholar
  6. Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci., 211, 05-131. MathSciNetCrossRefzbMATHGoogle Scholar
  7. Cooling, M. T., Hunter, P., & Crampin, E. J. (2009). Sensitivity of NFAT cycling to cytosolic calcium concentration: implications for hypertrophic signals in cardiac myocytes. Biophys. J., 96, 2095–2104. CrossRefGoogle Scholar
  8. Crabtree, G. R., & Olson, E. N. (2002). NFAT signaling: choreographing the social lives of cells. Cell, 109, S67–S79. CrossRefGoogle Scholar
  9. Feinberg, M. (1995a). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132, 311–370. MathSciNetCrossRefzbMATHGoogle Scholar
  10. Feinberg, M. (1995b). Multiple steady states for chemical reaction networks of deficiency one. Arch. Ration. Mech. Anal., 132, 371–406. MathSciNetCrossRefzbMATHGoogle Scholar
  11. Feliu, E., & Wiuf, C. (2012). Enzyme-sharing as a cause of multi-stationarity in signalling systems. J. R. Soc. Interface, 9(71), 1224–1232. CrossRefGoogle Scholar
  12. Gunawardena, J. (2005). Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl. Acad. Sci. USA, 102(41), 14617–14622. CrossRefGoogle Scholar
  13. Gunawardena, J. (2007). Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. Biophys. J., 93(11), 3828–3834. CrossRefGoogle Scholar
  14. Hermann-Kleiter, N., & Baier, G. (2010). NFAT pulls the strings during CD4+ T helper cell effector functions. Blood, 115(15), 2989–2997. CrossRefGoogle Scholar
  15. Holstein, K., Flockerzi, D., & Conradi, C. (2013). Parameter regimes for bistability in multisite phosphorylation networks. In preparation. Google Scholar
  16. Huang, C.-Y. F., & Ferrell, J. E. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA, 93(19), 10078–10083. CrossRefGoogle Scholar
  17. Klamt, S., & Gagneur, J. (2004). Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioninform., 175(5). Google Scholar
  18. Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol., 5(6), 472–484. CrossRefGoogle Scholar
  19. Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359. CrossRefGoogle Scholar
  20. Pérez Millán, M., Dickenstein, A., Shiu, A., & Conradi, C. (2012). Chemical reaction systems with toric steady states. Bull. Math. Biol., 74, 1027–1065. MathSciNetCrossRefzbMATHGoogle Scholar
  21. Salazar, C., & Höfer, T. (2007). Versatile regulation of multisite protein phosphorylation by order of phosphate processing and protein-protein interactions. FEBS J., 274, 1046–1061. CrossRefGoogle Scholar
  22. Salazar, C., & Höfer, T. (2009). Multisite protein phosphorylation—from molecular mechanisms to kinetic models. FEBS J., 276(12), 3177–3198. CrossRefGoogle Scholar
  23. Seger, R., & Krebs, E. G. (1995). The MAPK signaling cascade. FASEB J., 9, 726–735. Google Scholar
  24. Shaul, Y. D., & Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta, Mol. Cell Res., 1773(8), 1213–1226. CrossRefGoogle Scholar
  25. Thomson, M., & Gunawardena, J. (2009a). The rational parameterisation theorem for multisite post-translational modification systems. J. Theor. Biol., 261(4), 626–636. MathSciNetCrossRefGoogle Scholar
  26. Thomson, M., & Gunawardena, J. (2009b). Unlimited multistability in multisite phosphorylation systems. Nature, 460(7252), 274–277. CrossRefGoogle Scholar
  27. Tomida, T., Hirose, K., Takizawa, A., Shibasaki, F., & Iino, M. (2003). NFAT functions as a working memory of Ca+2 signals in decoding Ca+2 oscillation. EMBO J., 22(15), 3825–3832. CrossRefGoogle Scholar
  28. Tyson, J. J., & Novák, B. (2008). Temporal organization of the cell cycle. Curr. Biol., 18, R759–R768. CrossRefGoogle Scholar
  29. Uhr, M. (2012). Structural analysis of inference problems arising in systems biology. PhD thesis, ETH, Zurich. Google Scholar
  30. Wang, L., & Sontag, E. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57, 29–52. MathSciNetCrossRefzbMATHGoogle Scholar
  31. Yao, Z., & Seger, R. (2009). The ERK signaling cascade—views from different subcellular compartments. BioFactors, 35(5), 407–416. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Katharina Holstein
    • 1
  • Dietrich Flockerzi
    • 1
  • Carsten Conradi
    • 1
    Email author
  1. 1.Max-Planck-Institut Dynamik komplexer technischer SystemeMagdeburgGermany

Personalised recommendations