Bulletin of Mathematical Biology

, Volume 75, Issue 10, pp 1840–1878 | Cite as

Reconstruction of Certain Phylogenetic Networks from Their Tree-Average Distances

  • Stephen J. Willson
Original Article


Trees are commonly utilized to describe the evolutionary history of a collection of biological species, in which case the trees are called phylogenetic trees. Often these are reconstructed from data by making use of distances between extant species corresponding to the leaves of the tree. Because of increased recognition of the possibility of hybridization events, more attention is being given to the use of phylogenetic networks that are not necessarily trees. This paper describes the reconstruction of certain such networks from the tree-average distances between the leaves. For a certain class of phylogenetic networks, a polynomial-time method is presented to reconstruct the network from the tree-average distances. The method is proved to work if there is a single reticulation cycle.


Phylogeny Network Metric Phylogenetic network Tree Tree-average distance 


  1. Bandelt, H.-J., & Dress, A. (1992). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol., 1, 242–252. CrossRefGoogle Scholar
  2. Baroni, M., Semple, C., & Steel, M. (2004). A framework for representing reticulate evolution. Ann. Comb., 8, 391–408. MathSciNetCrossRefzbMATHGoogle Scholar
  3. Baroni, M., Semple, C., & Steel, M. (2006). Hybrids in real time. Syst. Biol., 55, 46–56. CrossRefGoogle Scholar
  4. Boc, A., & Makarenkov, V. (2003). New efficient algorithm for detection of horizontal gene transfer events. In G. Benson, R. D. Page (Eds.), Lecture notes in computer science: Vol. 2812. Proceedings of the WABI03 (pp. 190–201). Google Scholar
  5. Bryant, D., & Moulton, V. (2004). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol., 21, 255–265. CrossRefGoogle Scholar
  6. Cardona, G., Rosselló, F., & Valiente, G. (2009). Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform., 6(4), 552–569. CrossRefGoogle Scholar
  7. Choy, C., Jansson, J., Sadakane, K., & Sung, W.-K. (2005). Computing the maximum agreement of phylogenetic networks. Theor. Comput. Sci., 335(1), 93–107. MathSciNetCrossRefzbMATHGoogle Scholar
  8. Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol., 9(5), 687–705. CrossRefzbMATHGoogle Scholar
  9. Desper, R., & Gascuel, O. (2004). Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol. Evol., 21(3), 587–598. CrossRefGoogle Scholar
  10. Doolittle, W. F., et al. (2003). How big is the iceberg of which organella genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. Lond. B, Biol. Sci., 358, 39–47. CrossRefGoogle Scholar
  11. Eslahchi, C., Habibi, M., Hassanzadeh, R., & Mottaghi, E. (2010). MC-net: a method for the construction of phylogenetic networks based on the Monte-Carlo method. BMC Evol. Biol., 10, 254. doi: 10.1186/1471-2148-10-254. CrossRefGoogle Scholar
  12. Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Mol. Biol. Evol., 23, 1997–2000. CrossRefGoogle Scholar
  13. Gusfield, D., Eddhu, S., & Langley, C. (2004). Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol., 2, 173–213. CrossRefzbMATHGoogle Scholar
  14. Hasegawa, M., Kishino, H., & Yano, K. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22, 160–174. CrossRefGoogle Scholar
  15. Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol., 23(2), 254–267. CrossRefGoogle Scholar
  16. Huson, D., Rupp, R., & Scornavacca, C. (2010). Phylogenetic networks: concepts, algorithms and applications. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  17. van Iersel, L. J. J., Keijsper, J. C. M., Kelk, S. M., Stougie, L., Hagen, F., & Boekhout, T. (2009). Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans. Comput. Biol. Bioinform., 6(43), 667–681. CrossRefGoogle Scholar
  18. Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In S. Osawa & T. Honjo (Eds.), Evolution of life: fossils, molecules (pp. 79–95). Tokyo: Springer. Google Scholar
  19. Kimura, M. (1980). A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120. CrossRefGoogle Scholar
  20. Lake, J. A. (1994). Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA, 91, 1455–1459. CrossRefGoogle Scholar
  21. Marcussen, T., Jakobsen, K., Danihelka, J., Ballard, H., Blaxland, K., Brysting, A., & Oxelman, B. (2012). Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violacae). Syst. Biol., 61, 107–126. CrossRefGoogle Scholar
  22. Moret, B. M. E., Nakhleh, L., Warnow, T., Linder, C. R., Tholse, A., Padolina, A., Sun, J., & Timme, R. (2004). Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinform., 1, 13–23. CrossRefGoogle Scholar
  23. Nakhleh, L., Warnow, T., & Linder, C. R. (2004). Reconstructing reticulate evolution in species–theory and practice. In P. E. Bourne & D. Gusfield (Eds.), Proceedings of the eighth annual international conference on computational molecular biology (pp. 337–346). RECOMB ’04, San Diego, California, March 27–31, 2004. New York: ACM. Google Scholar
  24. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425. Google Scholar
  25. Semple, C., & Steel, M. (2003). Phylogenetics. Oxford: Oxford University Press. zbMATHGoogle Scholar
  26. Steel, M. A. (1994). Recovering a tree from the leaf colorations it generates under a Markov model. Appl. Math. Lett., 7(2), 19–23. MathSciNetCrossRefzbMATHGoogle Scholar
  27. Wang, L., Zhang, K., & Zhang, L. (2001). Perfect phylogenetic networks with recombination. J. Comput. Biol., 8, 69–78. CrossRefGoogle Scholar
  28. Wang, L., Ma, B., & Li, M. (2000). Fixed topology alignment with recombination. Discrete Appl. Math., 104(1–3), 281–300. MathSciNetCrossRefzbMATHGoogle Scholar
  29. Willson, S. J. (2010). Properties of normal phylogenetic networks. Bull. Math. Biol., 72, 340–358. MathSciNetCrossRefzbMATHGoogle Scholar
  30. Willson, S. J. (2012). Tree-average distances on certain phylogenetic networks have their weights uniquely determined. Algorithms Mol. Biol., 7, 13. doi: 10.1186/1748-7188-7-13. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations