Bulletin of Mathematical Biology

, Volume 75, Issue 10, pp 1747–1777

Approximating Optimal Controls for Networks when There Are Combinations of Population-Level and Targeted Measures Available: Chlamydia Infection as a Case-Study

Original Article

Abstract

Using a modified one-dimensional model for the spread of an SIS disease on a network, we show that the behaviour of complex network simulations can be replicated with a simpler model. This model is then used to design optimal controls for use on the network, which would otherwise be unfeasible to obtain, resulting in information about how best to combine a population-level random intervention with one that is more targeted. This technique is used to minimise intervention costs over a short time interval with a target prevalence, and also to minimise prevalence with a specified budget. When applied to chlamydia, we find results consistent with previous work; that is maximising targeted control (contact tracing) is important to using resources effectively, while high-intensity bursts of population control (screening) are more effective than maintaining a high level of coverage.

Keywords

Chlamydia Network Optimisation Control Budget 

References

  1. Althaus, C. L., Heijne, J. C. M., Roellin, A., & Low, N. (2010). Transmission dynamics of Chlamydia trachomatis affect the impact of screening programmes. Epidemics, 2(3), 123–131. doi:10.1016/j.epidem.2010.04.002. CrossRefGoogle Scholar
  2. Althaus, C. L., Turner, K. M. E., Schmid, B. V., Heijne, J. C., Kretzschmar, M., & Low, N. (2012). Transmission of Chlamydia trachomatis through sexual partnerships: a comparison between three individual-based models and empirical data. J. R. Soc. Interface, 9(66), 136–146. doi:10.1098/rsif.2011.0131. CrossRefGoogle Scholar
  3. Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. London: Oxford University Press. Google Scholar
  4. Armbruster, B., & Brandeau, M. L. (2007a). Contact tracing to control infectious disease: when enough is enough. Health Care Manage. Sci., 10(4), 341–355. doi:10.1007/s10729-007-9027-6. CrossRefGoogle Scholar
  5. Armbruster, B., & Brandeau, M. L. (2007b). Optimal mix of screening and contact tracing for endemic diseases. Math. Biosci., 209, 386–402. doi:10.1016/j.mbs.2007.02.007. MathSciNetCrossRefMATHGoogle Scholar
  6. Armbruster, B., & Brandeau, M. L. (2010). Cost-effective control of chronic viral diseases: finding the optimal level of screening and contact tracing. Math. Biosci., 224, 35–42. doi:10.1016/j.mbs.2009.12.006. MathSciNetCrossRefMATHGoogle Scholar
  7. Ball, F., & Neal, P. (2008). Network epidemic models with two levels of mixing. Math. Biosci., 212, 69–87. doi:10.1016/j.mbs.2008.01.001. MathSciNetCrossRefMATHGoogle Scholar
  8. Banks, H. T., Kwon, H.-D., Toivanen, J. A., & Tran, H. T. (2006). A state-dependent Riccati equation-based estimator approach for HIV feedback control. Optim. Control Appl. Methods, 27(2), 93–121. MathSciNetCrossRefGoogle Scholar
  9. Barabasi, A.-L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A, 272(1–2), 173–187. CrossRefGoogle Scholar
  10. Bauch, C. T. (2002). A versatile ODE approximation to a network model for the spread of sexually transmitted diseases. J. Math. Biol., 45(5), 375–395. doi:10.1007/s002850200153. MathSciNetCrossRefMATHGoogle Scholar
  11. Brown, V. (2010). Modelling healthcare provision for an infectious disease using optimal control. PhD thesis, University of Bath, University of Bath, Bath. Google Scholar
  12. Clarke, J., White, K. A. J., & Turner, K. (2012). Exploring short-term responses to changes in the control strategy for Chlamydia trachomatis. Comput. Math. Methods Med., 2012, 803097. doi:10.1155/2012/803097. CrossRefMATHGoogle Scholar
  13. Conn, A. R., Gould, N., Sartenaer, A., & Toint, P. L. (1996). Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. Optim., 6(3), 674–703. MathSciNetCrossRefMATHGoogle Scholar
  14. Dadebo, S. A., & McAuley, K. B. (1995). Dynamic optimization of constrained chemical engineering problems using dynamic programming. Comput. Chem. Eng., 19(5), 513–525. doi:10.1016/0098-1354(94)00086-4. CrossRefMATHGoogle Scholar
  15. de Vries, R., van Bergen, J. E. A. M., de Jong-van den Berg, L. T. W., & Postma, M. J. (2006). Systematic screening for Chlamydia trachomatis: estimating cost-effectiveness using dynamic modeling and Dutch data. Value Health, 9(1), 1–11. doi:10.1111/j.1524-4733.2006.00075.x. CrossRefGoogle Scholar
  16. Dorey, M. (2008). Modelling the spread of disease on networks. Ph.D. thesis, University of Bath. Google Scholar
  17. Eames, K. T. D., & Keeling, M. J. (2002). Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. USA, 99(20), 13330–13335. doi:10.1073/pnas.202244299. CrossRefGoogle Scholar
  18. Eames, K. T. D., & Keeling, M. J. (2003). Contact tracing and disease control. Proc. R. Soc. B, 270(1533), 2565–2571. doi:10.1098/rspb.2003.2554. CrossRefGoogle Scholar
  19. Eames, K. T. D., & Keeling, M. J. (2004). Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci., 189(2), 115–130. doi:10.1016/j.mbs.2004.02.003. MathSciNetCrossRefMATHGoogle Scholar
  20. Gersovitz, M., & Hammer, J. S. (2004). The economical control of infectious diseases. Econ J, 114, 1–27. doi:10.1046/j.0013-0133.2003.0174.x. CrossRefGoogle Scholar
  21. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25), 2340–2361. doi:10.1021/j100540a008. CrossRefGoogle Scholar
  22. Härkegård, O., & Glad, S. T. (2005). Resolving actuator redundancy–optimal control vs. control allocation. Automatica, 41(1), 137–144. doi:10.1016/j.automatica.2004.09.007. MathSciNetMATHGoogle Scholar
  23. Hethcote, H. W., & Yorke, J. A. (1984). Lecture notes in biomathematics: Vol. 66. Gonorrhea transmission dynamics and control. doi:10.1002/bimj.4710280308. CrossRefMATHGoogle Scholar
  24. Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10), 1781–1817. doi:10.1016/S0005-1098(97)00101-5. MathSciNetCrossRefMATHGoogle Scholar
  25. Keeling, M. J., & Eames, K. T. D. (2005). Networks and epidemic models. J. R. Soc. Interface, 2(4), 295–307. doi:10.1098/rsif.2005.0051. CrossRefGoogle Scholar
  26. Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton: Princeton University Press. MATHGoogle Scholar
  27. Kolda, T. G., Lewis, R. M., & Torczon, V. (2006). A generating set direct search augmented Lagrangian algorithm for optimization with a combination of general and linear constraints. Tech. rep., Sandia National Laboratories, sAND2006-5315 (August 2006). Google Scholar
  28. Korobeinikov, A. (2007). Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol., 69, 1871–1886. doi:10.1007/s11538-007-9196-y. MathSciNetCrossRefMATHGoogle Scholar
  29. Korobeinikov, A., & Maini, P. K. (2005). Non-linear incidence and stability of infectious disease models. Math. Med. Biol., 22, 113–128. doi:10.1093/imammb/dqi001. CrossRefMATHGoogle Scholar
  30. Kretzschmar, M., Welte, R., van den Hoek, A., & Maarten, J. P. (2001). Comparative model-based analysis of screening programs for chlamydia trachomatis infections. Am. J. Epidemiol., 153(1), 90–101. doi:10.1093/aje/153.1.90. CrossRefGoogle Scholar
  31. Kretzschmar, M., Turner, K. M. E., Barton, P. M., Edmunds, W. J., & Low, N. (2009). Predicting the population impact of chlamydia screening programmes: comparative mathematical modelling study. Sex. Transm. Infect., 85(5), 359–366. doi:10.1136/sti.2009.036251. CrossRefGoogle Scholar
  32. Kretzschmar, M., Satterwhite, C., Leichliter, J., & Berman, S. (2012). Effects of screening and partner notification on chlamydia positivity in the United States: a modeling study. Sex. Transm. Dis., 39(5), 325–331. doi:10.1097/OLQ.0b013e31824e52c2. CrossRefGoogle Scholar
  33. Lenhart, S., & Tridane, A. (2012). The Society for Mathematical Biology annual meeting and conference, Society for Mathematical Biology. Agent-based models of biological systems: approximation and control. Google Scholar
  34. Lenhart, S., & Workman, J. T. (2007). Mathematical and computational biology series. Optimal control applied to biological models. London: Chapman and Hall/CRC. MATHGoogle Scholar
  35. Lewis, R. M., & Torczon, V. (2002). A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim., 12(4), 1075–1089. doi:10.1137/S1052623498339727. MathSciNetCrossRefMATHGoogle Scholar
  36. Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E., & Aberg, Y. (2001). The web of human sexual contacts. Nature, 411, 907–908. doi:10.1038/35082140. CrossRefGoogle Scholar
  37. Liu, W., Levin, S. A., & Iwasa, Y. (1986). Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol., 23(2), 187–204. doi:10.1007/BF00276956. MathSciNetCrossRefMATHGoogle Scholar
  38. Liu, W., Hethcote, H. W., & Levin, S. A. (1987). Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol., 25(4), 359–380. doi:10.1007/BF00277162. MathSciNetCrossRefMATHGoogle Scholar
  39. Luus, R. (1992). On the application of iterative dynamic programming to singular optimal control problems. IEEE Trans. Autom. Control, 37(11), 1802–1806. MathSciNetCrossRefMATHGoogle Scholar
  40. Mercer, C. H., Aicken, C. R. H., Brook, G., Estcourt, C. S., & Cassell, J. A. (2011). Estimating the likely public health impact of partner notification for a clinical service: an evidence-based algorithm. Am. J. Publ. Health, 101(11), 2117–2123. doi:10.2105/AJPH.2011.300211. CrossRefGoogle Scholar
  41. Molloy, M., & Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Struct. Algorithms, 6(2–3), 161–180. doi:10.1002/rsa.3240060204. MathSciNetCrossRefMATHGoogle Scholar
  42. National Chlamydia Screening Programme (2009). The bigger picture. The National Chlamydia Screening Programme 2008/09 annual report, Tech. rep., Health Protection Agency (November 2009). Google Scholar
  43. National Chlamydia Screening Steering Group (2004). First steps. Annual report of the National Chlamydia Screening Programme in England, 2003/04, Tech. rep., Department of Health (November 2004). Google Scholar
  44. Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86(14), 3200–3203. doi:10.1103/PhysRevLett.86.3200. CrossRefGoogle Scholar
  45. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., & Mishchenko, E. F. (1962). The mathematical theory of optimal processes. New York: Wiley. Google Scholar
  46. Rand, D. A. (1999). Advanced ecological theory: principles and applications (pp. 100–142). Oxford: Blackwell Science. CrossRefGoogle Scholar
  47. Robins, G., Pattison, P., & Woolcock, J. (2004). Missing data in networks: exponential random graph (p*) models for networks with non-respondents. Soc. Netw., 26(3), 257–283. doi:10.1016/j.socnet.2004.05.001. CrossRefGoogle Scholar
  48. Roy, M., & Pascual, M. (2006). On representing network heterogeneities in the incidence rate of simple epidemic models. Ecol. Complex., 3(1), 80–90. doi:10.1016/j.ecocom.2005.09.001. CrossRefGoogle Scholar
  49. Tholudur, A., & Ramirez, W. F. (1997). Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm. Int. J. Control, 68(5), 1115–1128. doi:10.1080/002071797223235. MathSciNetCrossRefMATHGoogle Scholar
  50. Turner, K., Adams, E., Grant, A., Macleod, J., Bell, G., Clarke, J., & Horner, P. (2011). Costs and cost effectiveness of different strategies for chlamydia screening and partner notification: an economic and mathematical modelling study. BMJ, 342, c7250. doi:10.1136/bmj.c7250. CrossRefGoogle Scholar
  51. Volz, E. (2008). Sir dynamics in random networks with heterogeneous connectivity. J. Math. Biol., 56, 293–310. MathSciNetCrossRefMATHGoogle Scholar
  52. Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program., 106(1), 25–57. doi:10.1007/s10107-004-0559-y. MathSciNetCrossRefMATHGoogle Scholar
  53. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. doi:10.1038/30918. CrossRefGoogle Scholar
  54. Watts, C., Zimmerman, C., Foss, A. M., Hossain, M., Cox, A., & Vickerman, P. (2010). Remodelling core group theory: the role of sustaining populations in HIV transmission. Sex. Transm. Infect. doi:10.1136/sti.2010.044602. Google Scholar
  55. Zaric, G. S., & Brandeau, M. L. (2001). Optimal investment in a portfolio of HIV prevention programs. Med. Decis. Mak., 21(5), 391–408. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  1. 1.Centre for Mathematical BiologyUniversity of BathBathUK
  2. 2.School of Social and Community MedicineUniversity of BristolBristolUK

Personalised recommendations