Bulletin of Mathematical Biology

, Volume 75, Issue 9, pp 1612–1635 | Cite as

The Kinetics of Vitamin D3 in the Osteoblastic Cell

  • James L. Buchanan
  • Robert Gilbert
  • Yvonne Ou
  • Anja Nohe
  • Rachel Schaefer
Original Article

Abstract

Experimental evidence is presented on the translocation of vitamin D metabolite, 1,25-(OH)2D3, from the membrane to the nucleus in osteoblast progenitor cells. A mathematical model permitting traversal of the cytoplasm at either a fixed velocity or by diffusion is formulated in order to determine whether transport along the cytoskeletal tracks is more consistent with the observed spatial-temporal distribution than diffusion, and it is so found. The model includes reactions in the nucleus involving D3 to form other compounds, such as protegerin, and thus also makes predictions of the concentrations of these compounds in various regions of the cell.

Keywords

Vitamin D Convection–diffusion 

References

  1. Berry, J. L., Farquharson, C., Whitehead, C. C., & Mawer, E. B. (1996). Growth plate chondrocyte vitamin d receptor number and affinity are reduced in avian tibial dyschondroplastic lesions. Bone, 19(2), 197–203. CrossRefGoogle Scholar
  2. Biswas, P., & Zanello, L. P. (2009). 1alpha,25(oh)(2) vitamin d(3) induction of atp secretion in osteoblasts. J. Bone Miner. Res., 24. Google Scholar
  3. Bonor, J. C., Schaefer, R. J., Menegazzo, N., Booksh, K., & Nohe, A. G. (2012). Design of 1,25 dihydroxyvitamin d3 coupled quantum dots, a novel imaging tool. J. Nanosci. Nanotechnol., 12(3), 2185–2191. CrossRefGoogle Scholar
  4. Buchanan, J. L., Gilbert, R. P., & Ou, M. j. Y. (2011). Wavelet decomposition of transmitted ultrasound wave through a 1−d muscle bone system. J. Biomech., 44(2), 352–358. CrossRefGoogle Scholar
  5. Buchanan, J. L., Gilbert, R. P., & Ou, M. J. (2012). Transfer functions for a one-dimensional fluid poroelastic system subject to an ultrasonic pulse. Nonlinear Anal., Real World Appl., 13(3), 1030–1043. MathSciNetCrossRefMATHGoogle Scholar
  6. Deeb, K. K., Trump, D. L., & Johnson, C. S. (2007). Vitamin d signalling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer, 7(9), 684–700. CrossRefGoogle Scholar
  7. Gallagher, J. C. (2008). Advances in bone biology and new treatments for bone loss. Maturitas, 60(1), 656–659. CrossRefGoogle Scholar
  8. Gilbert, R. P., Guyenne, P., & Liu, Y. (2013). Modelling of the kinetics of the vitamin d 3 in the osteoblastic cells. Math. Biosci. Eng., 10(2), 319–344. MathSciNetCrossRefMATHGoogle Scholar
  9. Hatton, J. P., Pooran, M., Li, C.-F., Luzzio, C., & Hughes-Fulford, M. (2003). A short pulse of mechanical force induces gene expression and growth in mc3t3-e1 osteoblasts via an erk 1/2 pathway. J. Bone Miner. Res., 18(1), 58–66. CrossRefGoogle Scholar
  10. Kamimura, S., Gallieni, M., Zhong, M., Beron, W., Slatopolsky, E., & Dusso, A. (1995). Microtubules mediate cellular 25-hydroxyvitamin d3 trafficking and the genomic response to 1,25-dihydroxyvitamin d3 in normal human monocytes. J. Biol. Chem., 270(38), 22160–22166. CrossRefGoogle Scholar
  11. Komarova, S. V., Smith, R. J., Dixon, S. J., Sims, S. M., & Wahl, L. M. (2003). Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone, 33(2), 206–215. CrossRefGoogle Scholar
  12. Lang, I., Scholz, M., & Peters, R. (1986). Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J. Cell Biol., 102(4), 1183–1190. CrossRefGoogle Scholar
  13. Larsson, D., & Nemere, I. (2002). Vectorial transcellular calcium transport in intestine: integration of current models. J. Biomed. Biotechnol., 2, 117–119. CrossRefGoogle Scholar
  14. Lauffenburger, D. A., & Linderman, J. (1996). Receptors: models for binding, trafficking, and signaling. New York: Oxford University Press. Google Scholar
  15. Lehmann, B., & Meurer, M. (2010). Vitamin d metabolism. Dermatol. Ther., 23(1), 2–12. CrossRefGoogle Scholar
  16. Lemaire, V., Tobin, F. L., Greller, L. D., Cho, C. R., & Suva, L. J. (2004). Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J. Theor. Biol., 229(3), 293–309. MathSciNetCrossRefGoogle Scholar
  17. Long, F. (2011). Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol., 13(1), 27–38. CrossRefGoogle Scholar
  18. Luby-Phelps, K. (1999). Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. In D. E. B. H. Walter & P. A. Srere (Eds.), International review of cytology: Vol. 192. Mlcrocompartmentatlon and phase separation in cytoplasm (pp. 189–221). San Diego: Academic Press. CrossRefGoogle Scholar
  19. Lukacs, G. L., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., & Verkman, A. S. (2000). Size-dependent dna mobility in cytoplasm and nucleus. J. Biol. Chem., 275(3), 1625–1629. CrossRefGoogle Scholar
  20. Nemere, I. (1999). 24,25-dihydroxyvitamin d3 suppresses the rapid actions of 1,25-dihydroxyvitamin d3 and parathyroid hormone on calcium transport in chick intestine. J. Bone Miner. Res., 14, 1543–1549. CrossRefGoogle Scholar
  21. Norman, A. W., Okamura, W. H., Bishop, J. E., & Henry, H. L. (2002). Update on biological actions of 1alpha, 25(oh)2-vitamin d3 (rapid effects) and 24r,25(oh)2-vitamin d3. Mol. Cell. Endocrinol., 197(1–2), 1–13. CrossRefGoogle Scholar
  22. Novak, I. L., Kraikivski, P., & Slepchenko, B. M. (2009). Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. Biophys. J., 97(3), 758–767. CrossRefGoogle Scholar
  23. Rattanakul, C., Lenbury, Y., Krishnamara, N., & Wollkind, D. J. (2003). Modeling of bone formation and resorption mediated by parathyroid hormone: response to estrogen/pth therapy. Biosystems, 70(1), 55–72. CrossRefGoogle Scholar
  24. Ratushny, A. V. (2006). Mathematical modeling of receptor mediated endocytosis of low-density lipoproteins and their degradation in lysosomes. In N. Kolchanov & R. Hofestädt (Eds.), Proceedings of the fifth international conference on bioinformatics of genome regulation and structure (BGRS’2006) (pp. 151–155). Google Scholar
  25. Trouvin, A. P., & Goeb, V. (2010). Receptor activator of nuclear factor-kappab ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin. Interv. Aging, 5. Google Scholar
  26. Wasserman, R. H., & Fullmer, C. S. (1995). Vitamin d and intestinal calcium transport: facts speculations and hypotheses. J. Nutr., 125, 1971s–1979s. Google Scholar
  27. Willnow, T. E., & Nykjaer, A. (2009). Cellular uptake of steroid carrier proteins–mechanisms and implications. Mol. Cell. Endocrinol., 316(1), 93–102. CrossRefGoogle Scholar
  28. Witfield, G. K., Jurutka, P. W., Hausler, C. A., Hsieh, J.-C., Barthel, T. K., Jacobs, E. T., Dominguez, C. E., Thatcher, M. L., & Hausler, M. R. (1997). Nuclear vitamin d receptor: control of gene transcription, and novel bioactions. In D. Feldman, F. H. Glorieux, & J. W. Pike (Eds.), Vtamin D (pp. 219–261). New York: Academic Press. Google Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • James L. Buchanan
    • 1
  • Robert Gilbert
    • 2
  • Yvonne Ou
    • 2
  • Anja Nohe
    • 3
  • Rachel Schaefer
    • 3
  1. 1.Mathematics DepartmentUnited States Naval AcademyAnnapolisUSA
  2. 2.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  3. 3.Biological SciencesUniversity of DelawareNewarkUSA

Personalised recommendations