Bulletin of Mathematical Biology

, Volume 75, Issue 9, pp 1571–1611 | Cite as

The Neural Ring: An Algebraic Tool for Analyzing the Intrinsic Structure of Neural Codes

  • Carina Curto
  • Vladimir Itskov
  • Alan Veliz-Cuba
  • Nora Youngs
Original Article


Neurons in the brain represent external stimuli via neural codes. These codes often arise from stereotyped stimulus-response maps, associating to each neuron a convex receptive field. An important problem confronted by the brain is to infer properties of a represented stimulus space without knowledge of the receptive fields, using only the intrinsic structure of the neural code. How does the brain do this? To address this question, it is important to determine what stimulus space features can—in principle—be extracted from neural codes. This motivates us to define the neural ring and a related neural ideal, algebraic objects that encode the full combinatorial data of a neural code. Our main finding is that these objects can be expressed in a “canonical form” that directly translates to a minimal description of the receptive field structure intrinsic to the code. We also find connections to Stanley–Reisner rings, and use ideas similar to those in the theory of monomial ideals to obtain an algorithm for computing the primary decomposition of pseudo-monomial ideals. This allows us to algorithmically extract the canonical form associated to any neural code, providing the groundwork for inferring stimulus space features from neural activity alone.


Neural code Pseudo-monomial ideals 



CC was supported by NSF DMS 0920845 and NSF DMS 1225666, a Woodrow Wilson Career Enhancement Fellowship, and an Alfred P. Sloan Research Fellowship. VI was supported by NSF DMS 0967377, NSF DMS 1122519, and the Swartz Foundation.


  1. Atiyah, M. F., & Macdonald, I. G. (1969). Introduction to commutative algebra. Reading: Addison–Wesley zbMATHGoogle Scholar
  2. Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nat. Rev. Neurosci., 7(5), 358–366. CrossRefGoogle Scholar
  3. Ben-Yishai, R., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA, 92(9), 3844–3848. CrossRefGoogle Scholar
  4. Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., & Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci., 18(18), 7411–7425. Google Scholar
  5. Cox, D., Little, J., & O’Shea, D. (1997). An introduction to computational algebraic geometry and commutative algebra. In Undergraduate texts in mathematics: Ideals, varieties, and algorithms (2nd ed.). New York: Springer. CrossRefGoogle Scholar
  6. Curto, C., & Itskov, V. (2008). Cell groups reveal structure of stimulus space. PLoS Comput. Biol., 4(10). Google Scholar
  7. Danzer, L., Grünbaum, B., & Klee, V. (1963). Helly’s theorem and its relatives. In Proc. sympos. pure math. (Vol. VII, pp. 101–180). Providence: Am. Math. Soc. Google Scholar
  8. Deneve, S., Latham, P. E., & Pouget, A. (1999). Reading population codes: a neural implementation of ideal observers. Nat. Neurosci., 2(8), 740–745. CrossRefGoogle Scholar
  9. Eisenbud, D., Grayson, D. R., Stillman, M., & Sturmfels, B. (Eds.) (2002). Algorithms and computation in mathematics: Vol. 8. Computations in algebraic geometry with Macaulay 2. Berlin: Springer. zbMATHGoogle Scholar
  10. Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  11. Jarrah, A., Laubenbacher, R., Stigler, B., & Stillman, M. (2007). Reverse-engineering of polynomial dynamical systems. Adv. Appl. Math., 39, 477–489. MathSciNetCrossRefzbMATHGoogle Scholar
  12. Kalai, G. (1984). Characterization of f-vectors of families of convex sets in R d. I. Necessity of Eckhoff’s conditions. Isr. J. Math., 48(2–3), 175–195. MathSciNetCrossRefzbMATHGoogle Scholar
  13. Kalai, G. (1986). Characterization of f-vectors of families of convex sets in R d. II. Sufficiency of Eckhoff’s conditions. J. Comb. Theory, Ser. A, 41(2), 167–188. MathSciNetCrossRefzbMATHGoogle Scholar
  14. Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nat. Neurosci., 9(11), 1432–1438. CrossRefGoogle Scholar
  15. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M. B. (2006). Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci., 7(8), 663–678. CrossRefGoogle Scholar
  16. Miller, E., & Sturmfels, B. (2005). Graduate texts in mathematics: Combinatorial commutative algebra. Berlin: Springer. Google Scholar
  17. Nirenberg, S., & Latham, P. E. (2003). Decoding neuronal spike trains: how important are correlations? Proc. Natl. Acad. Sci. USA, 100(12), 7348–7353. CrossRefGoogle Scholar
  18. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res., 34(1), 171–175. CrossRefGoogle Scholar
  19. Osborne, L., Palmer, S., Lisberger, S., & Bialek, W. (2008). The neural basis for combinatorial coding in a cortical population response. J. Neurosci., 28(50), 13522–13531. CrossRefGoogle Scholar
  20. Pistone, G., Riccomagno, E., & Wynn, H. P. (2001). Computational commutative algebra in statistics. In Monographs on statistics and applied probability.: Vol. 89. Algebraic statistics, Boca Raton: Chapman & Hall/CRC Press. Google Scholar
  21. Schneidman, E., Berry, M. II., Segev, R., & Bialek, W. (2006a). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(20), 1007–1012. CrossRefGoogle Scholar
  22. Schneidman, E., Puchalla, J., Segev, R., Harris, R., Bialek, W., & Berry II, M. (2006b). Synergy from silence in a combinatorial neural code. arXiv:q-bio.NC/0607017.
  23. Shiu, A., & Sturmfels, B. (2010). Siphons in chemical reaction networks. Bull. Math. Biol., 72(6), 1448–1463. MathSciNetCrossRefzbMATHGoogle Scholar
  24. Stanley, R. (2004). Progress in mathematics: Combinatorics and commutative algebra. Boston: Birkhäuser. Google Scholar
  25. Veliz-Cuba, A. (2012). An algebraic approach to reverse engineering finite dynamical systems arising from biology. SIAM J. Appl. Dyn. Syst., 11(1), 31–48. MathSciNetCrossRefzbMATHGoogle Scholar
  26. Watkins, D. W., & Berkley, M. A. (1974). The orientation selectivity of single neurons in cat striate cortex. Exp. Brain Res., 19, 433–446. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Carina Curto
    • 1
  • Vladimir Itskov
    • 1
  • Alan Veliz-Cuba
    • 1
  • Nora Youngs
    • 1
  1. 1.Department of MathematicsUniversity of Nebraska–LincolnLincolnUSA

Personalised recommendations