Bulletin of Mathematical Biology

, Volume 75, Issue 9, pp 1417–1433 | Cite as

Mathematical Model of the Roles of T Cells in Inflammatory Bowel Disease

  • Wing-Cheong Lo
  • Razvan I. Arsenescu
  • Avner Friedman
Original Article


Gut mucosal homeostasis depends on complex interactions among the microbiota, the intestinal epithelium, and the gut associated immune system. A breakdown in some of these interactions may precipitate inflammation. Inflammatory bowel diseases, Crohn’s disease, and ulcerative colitis are chronic inflammatory disorders of the gastrointestinal tract. The initial stages of disease are marked by an abnormally high level of pro-inflammatory helper T cells, Th1. In later stages, Th2 helper cells may dominate while the Th1 response may dampen. The interaction among the T cells includes the regulatory T cells (Treg). The present paper develops a mathematical model by a system of differential equations with terms nonlocal in the space spanned by the concentrations of cytokines that represents the interaction among T cells through a cytokine signaling network. The model demonstrates how the abnormal levels of T cells observed in inflammatory bowel diseases can arise from abnormal regulation of Th1 and Th2 cells by Treg cells.


Inflammatory bowel disease T helper cells Cytokines Treg control Mathematical model 


  1. Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. N. Engl. J. Med., 361, 2066–2078. CrossRefGoogle Scholar
  2. Babyatsky, M. W., Rossiter, G., & Podolsky, D. K. (1996). Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology, 110, 975–984. CrossRefGoogle Scholar
  3. Bamias, G., Kaltsa, G., & Ladas, S. D. (2011). Cytokines in the pathogenesis of ulcerative colitis. Discov. Medicin., 11, 459–467. Google Scholar
  4. Baumgart, D., & Carding, S. (2007). Inflammatory bowel disease: cause and immunobiology. Lancet, 369(9573), 1627–1640. CrossRefGoogle Scholar
  5. Bouma, G., & Strober, W. (2003). The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol., 3(7), 521–533. CrossRefGoogle Scholar
  6. Conlon, P. J., Tyler, S., Grabstein, K. H., & Morrissey, P. (1989–1990) Interleukin-4 (b-cell stimulatory factor-1) augments the in vivo generation of cytotoxic cells in immunosuppressed animals. Biotechnol. Ther., 1, 31–41. Google Scholar
  7. Cosmi, L., Liotta, F., Angeli, R., Mazzinghi, B., Santarlasci, V., Manetti, R., Lasagni, L., Vanini, V., Romagnani, P., Maggi, E., Annunziato, F., & Romagnani, S. (2004). Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood, 103, 3117–3121. CrossRefGoogle Scholar
  8. Czarniecki, C. W., & Sonnenfeld, G. (1993). Interferon-gamma and resistance to bacterial infections. APMIS, Acta Pathol. Microbiol. Immunol. Scand., 101, 1–17. CrossRefGoogle Scholar
  9. Eastaff-Leung, N., Mabarrack, N., Barbour, A., Cummins, A., & Barry, S. (2010). Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J. Clin. Immunol., 30, 80–89. CrossRefGoogle Scholar
  10. Germain, R. N. (2012). Maintaining system homeostasis: the third law of Newtonian immunology. Nat. Immunol., 13, 902–906. CrossRefGoogle Scholar
  11. Grassegger, A., & Hopf, R. (2004). Significance of the cytokine interferon gamma in clinical dermatology. Clin. Exp. Dermatol., 29, 584–588. CrossRefGoogle Scholar
  12. Grogan, J. L., Mohrs, M., Harmon, B., Lacy, D. A., Sedat, J. W., & Locksley, R. M. (2001). Early transcription and silencing of cytokine genes underlie polarization of t helper cell subsets. Immunity, 14(3), 205–215. CrossRefGoogle Scholar
  13. Gross, F., Metzner, G., & Behn, U. (2010). Mathematical modeling of allergy and specific immunotherapy: Th1–Th2–Treg interactions. J. Theor. Biol., 269, 70–78. MathSciNetCrossRefGoogle Scholar
  14. Hofer, T., Nathansen, H., Lohning, M., Radbruch, A., & Heinrich, R. (2002). GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model. Proc. Natl. Acad. Sci. USA, 99, 9364–9368. CrossRefGoogle Scholar
  15. Hwang, E. S., Hong, J. H., & Glimcher, L. H. (2005). IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J. Exp. Med., 202, 1289–1300. CrossRefGoogle Scholar
  16. Ishikawa, D., Okazawa, A., Corridoni, D., Jia, L. G., Wang, X. M., Guanzon, M., Xin, W., Arseneau, K. O., Pizarro, T. T., & Cominelli, F. (2012). Tregs are dysfunctional in vivo in a spontaneous murine model of Crohn’s disease. Mucosal Immunol. doi:10.1038/mi.2012.67.
  17. Kaminskam, B., Wesolowska, A., & Danilkiewicz, M. (2005). Tgf beta signalling and its role in tumour pathogenesis. Acta Biochim. Pol., 52, 329–337. Google Scholar
  18. Kato, K., Fukunaga, K., Kamikozuru, K., Kashiwamura, S., Hida, N., Ohda, Y., Takeda, N., Yoshida, K., Iimuro, M., Yokoyama, Y., Kikuyama, R., Miwa, H., & Matsumoto, T. (2011). Infliximab therapy impacts the peripheral immune system of immunomodulator and corticosteroid naive patients with Crohn’s disease. Gut Liver, 5, 37–45. CrossRefGoogle Scholar
  19. Kugathasan, S., Saubermann, L. J., Smith, L., Kou, D., Itoh, J., Binion, D. G., Levine, A. D., Blumberg, R. S., & Fiocchi, C. (2007). Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease. Gut, 56, 1696–1705. CrossRefGoogle Scholar
  20. Lee, S.-M., Gao, B., & Fang, D. (2008). Foxp3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood, 111(7), 3599–3606. CrossRefGoogle Scholar
  21. Lighvani, A. A., Frucht, D. M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B. D., Nguyen, B. V., Gadina, M., Sher, A., Paul, W. E., & O’Shea, J. J. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. USA, 98(15), 137–142. Google Scholar
  22. Maloy, K., & Powrie, F. (2011). Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, 474(7351), 298–306. CrossRefGoogle Scholar
  23. Matsuoka, K., Inoue, N., Sato, T., Okamoto, S., Hisamatsu, T., Kishi, Y., Sakuraba, A., Hitotsumatsu, O., Ogata, H., Koganei, K., Fukushima, T., Kanai, T., Watanabe, M., Ishii, H., & Hibi, T. (2004). T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn’s disease. Gut, 53, 1303–1308. CrossRefGoogle Scholar
  24. Maul, J., Loddenkemper, C., Mundt, P., Berg, E., Giese, T., Stallmach, A., Zeitz, M., & Duchmann, R. (2005). Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology, 128, 1868–1878. CrossRefGoogle Scholar
  25. Mitsuyama, K., Tomiyasu, N., Takaki, K., Masuda, J., Yamasaki, H., Kuwaki, K., Takeda, T., Kitazaki, S., Tsuruta, O., & Sata, M. (2006). Interleukin-10 in the pathophysiology of inflammatory bowel disease: increased serum concentrations during the recovery phase. Mediat. Inflamm., 2006(6), 26875. Google Scholar
  26. Nelson, B. H. (2004). IL-2, regulatory T cells, and tolerance. J. Immunol., 172, 3983–3988. Google Scholar
  27. Osugi, Y., Hara, J., Tagawa, S., Takai, K., Hosoi, G., Matsuda, Y., Ohta, H., Fujisaki, H., Kobayashi, M., Sakata, N., Kawa-Ha, K., Okada, S., & Tawa, A. (1997). Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood, 89, 4100–4103. Google Scholar
  28. Pak, S., Holland, N., Garnett, E. A., Mileti, E., Mahadevan, U., Beckert, R., Kanwar, B., & Heyman, M. B. (2012). Cytokine profiles in peripheral blood of children and adults with Crohn disease. J. Pediatr. Gastroenterol. Nutr., 54, 769–775. CrossRefGoogle Scholar
  29. Rao, B. M., Driver, I., Lauffenburger, D. A., & Wittrup, K. D. (2004). Interleukin 2 (IL-2) variants engineered for increased IL-2 receptor alpha-subunit affinity exhibit increased potency arising from a cell surface ligand reservoir effect. Mol. Pharmacol., 66, 864–869. Google Scholar
  30. Robinson, T. M., Nelson, R. G., & Boyer, J. D. (2003). Parasitic infection and the polarized Th2 immune response can alter a vaccine-induced immune response. DNA Cell Biol., 22, 421–430. CrossRefGoogle Scholar
  31. Rubin, D. T., Uluscu, O., & Sederman, R. (2012). Response to biologic therapy in Crohn’s disease is improved with early treatment: An analysis of health claims data. Inflamm. Bowel Dis. doi:10.1002/ibd.22925.
  32. Sakaguchi, S., Wing, K., & Yamaguchi, T. (2009). Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur. J. Immunol., 39, 2331–2336. CrossRefGoogle Scholar
  33. Sansonetti, P. J. (2004). War and peace at mucosal surfaces. Nat. Rev. Immunol., 4, 953–964. CrossRefGoogle Scholar
  34. Stummvoll, G. H., DiPaolo, R. J., Huter, E. N., Davidson, T. S., Glass, D., Ward, J. M., & Shevach, E. M. (2008). Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells. J. Immunol., 181(3), 1908–1916. Google Scholar
  35. Szabo, S. J., Dighe, A. S., Gubler, U., & Murphy, K. M. (1997). Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med., 185(5), 817–824. CrossRefGoogle Scholar
  36. Wendelsdorf, K., Bassaganya-Riera, J., Hontecillas, R., & Eubank, S. (2010). Model of colonic inflammation: immune modulatory mechanisms in inflammatory bowel disease. J. Theor. Biol., 264, 1225–1239. MathSciNetCrossRefGoogle Scholar
  37. Yates, A., Callard, R., & Stark, J. (2004). Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol., 231(2), 181–196. MathSciNetCrossRefGoogle Scholar
  38. Zenewicz, L. A., Antov, A., & Flavell, R. A. (2009). CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med., 15(5), 199–207. CrossRefGoogle Scholar
  39. Zhu, J., Jankovic, D., Oler, A., Wei, G., Sharma, S., Hu, G., Guo, L., Yagi, R., Yamane, H., Punkosdy, G., Feigenbaum, L., Zhao, K., & Paul, W. E. (2012). The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity, 37, 660–673. CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2013

Authors and Affiliations

  • Wing-Cheong Lo
    • 1
  • Razvan I. Arsenescu
    • 2
  • Avner Friedman
    • 3
  1. 1.Mathematical Biosciences InstituteOhio State UniversityColumbusUSA
  2. 2.Ohio State University Medical Center, Department of Internal MedicineOhio State UniversityColumbusUSA
  3. 3.Mathematical Biosciences Institute, Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations